179,897 research outputs found

    Neural Body Fitting: Unifying Deep Learning and Model-Based Human Pose and Shape Estimation

    Full text link
    Direct prediction of 3D body pose and shape remains a challenge even for highly parameterized deep learning models. Mapping from the 2D image space to the prediction space is difficult: perspective ambiguities make the loss function noisy and training data is scarce. In this paper, we propose a novel approach (Neural Body Fitting (NBF)). It integrates a statistical body model within a CNN, leveraging reliable bottom-up semantic body part segmentation and robust top-down body model constraints. NBF is fully differentiable and can be trained using 2D and 3D annotations. In detailed experiments, we analyze how the components of our model affect performance, especially the use of part segmentations as an explicit intermediate representation, and present a robust, efficiently trainable framework for 3D human pose estimation from 2D images with competitive results on standard benchmarks. Code will be made available at http://github.com/mohomran/neural_body_fittingComment: 3DV 201

    3D Human Pose and Shape Estimation Based on Parametric Model and Deep Learning

    Get PDF
    3D human body reconstruction from monocular images has wide applications in our life, such as movie, animation, Virtual/Augmented Reality, medical research and so on. Due to the high freedom of human body in real scene and the ambiguity of inferring 3D objects from 2D images, it is a challenging task to accurately recover 3D human body models from images. In this thesis, we explore the methods for estimating 3D human body models from images based on parametric model and deep learning.In the first part, the coarse 3D human body models are estimated automatically from multi-view images based on a parametric human body model called SMPL model. Two routes are exploited for estimating the pose and shape parameters of the SMPL model to obtain the 3D models: (1) Optimization based methods; and (2) Deep learning based methods. For the optimization based methods, we propose the novel energy functions based on some prior information including the 2D joint points and silhouettes. Through minimizing the energy functions, the SMPL model is fitted to the prior information, and then, the coarse 3D human body is obtained. In addition to the traditional optimization based methods, a deep learning based method is also proposed in the following work to regress the pose and shape parameters of the SMPL model. A novel architecture is proposed to put the optimization into a training loop of convolutional neural network (CNN) to form a self-supervision structure based on the multi-view images. The proposed methods are evaluated on both synthetic and real datasets to demonstrate that they can obtain better estimation of the pose and shape of 3D human body than previous approaches.In the second part, the problem is shifted to the detailed 3D human body reconstruction from multi-view images. Instead of using the SMPL model, implicit function is utilized to represent 3D models because implicit representation can generate continuous surface and has better flexibility for arbitrary topology. Firstly, a multi-scale features based method is proposed to learn the implicit representation for 3D models through multi-stage hourglass networks from multi-view images. Furthermore, a coarse-to-fine method is proposed to refine the 3D models from multi-view images through learning the voxel super-resolution. In this method, the coarse 3D models are estimated firstly by the learned implicit function based on multi-scale features from multi-view images. Afterwards, by voxelizing the coarse 3D models to low resolution voxel grids, voxel super-resolution is learned through a multi-stage 3D CNN for feature extraction from low resolution voxel grids and fully connected neural network for predicting the implicit function. Voxel super-resolution is able to remove the false reconstruction and preserve the surface details. The proposed methods are evaluated on both real and synthetic datasets in which our method can estimate 3D model with higher accuracy and better surface quality than some previous methods

    HIGH QUALITY HUMAN 3D BODY MODELING, TRACKING AND APPLICATION

    Get PDF
    Geometric reconstruction of dynamic objects is a fundamental task of computer vision and graphics, and modeling human body of high fidelity is considered to be a core of this problem. Traditional human shape and motion capture techniques require an array of surrounding cameras or subjects wear reflective markers, resulting in a limitation of working space and portability. In this dissertation, a complete process is designed from geometric modeling detailed 3D human full body and capturing shape dynamics over time using a flexible setup to guiding clothes/person re-targeting with such data-driven models. As the mechanical movement of human body can be considered as an articulate motion, which is easy to guide the skin animation but has difficulties in the reverse process to find parameters from images without manual intervention, we present a novel parametric model, GMM-BlendSCAPE, jointly taking both linear skinning model and the prior art of BlendSCAPE (Blend Shape Completion and Animation for PEople) into consideration and develop a Gaussian Mixture Model (GMM) to infer both body shape and pose from incomplete observations. We show the increased accuracy of joints and skin surface estimation using our model compared to the skeleton based motion tracking. To model the detailed body, we start with capturing high-quality partial 3D scans by using a single-view commercial depth camera. Based on GMM-BlendSCAPE, we can then reconstruct multiple complete static models of large pose difference via our novel non-rigid registration algorithm. With vertex correspondences established, these models can be further converted into a personalized drivable template and used for robust pose tracking in a similar GMM framework. Moreover, we design a general purpose real-time non-rigid deformation algorithm to accelerate this registration. Last but not least, we demonstrate a novel virtual clothes try-on application based on our personalized model utilizing both image and depth cues to synthesize and re-target clothes for single-view videos of different people

    Effective Face Feature For Human Identification

    Get PDF
    Face image is one of the most important parts of human body. It is easily use for identification process. People naturally identify one another through face images. Due to increase rate of insecurity in our society, accurate machine based face recognition systems are needed to detect impersonators. Face recognition systems comprise of face detector module, preprocessing unit, feature extraction subsystem and classification stage. Robust feature extraction algorithm plays major role in determining the accuracy of intelligent systems that involves image processing analysis. In this paper, pose invariant feature is extracted from human faces. The proposed feature extraction method involves decomposition of captured face image into four sub-bands using Haar wavelet transform thereafter shape and texture features are extracted from approximation and detailed bands respectively. The pose invariant feature vector is computed by fusing the extracted features. Effectiveness of the feature vector in terms of intra-person variation and inter-persons variation was obtained from feature plot
    • …
    corecore