991 research outputs found

    On the Geometry of Sculpting-like Gauging Processes

    Get PDF
    Recently, a new gauging procedure called Sculpting mechanism was proposed to obtain the M-theory origin of type II gauged Supergravity theories in 9D. We study this procedurein detail and give a better understanding of the different deformations and changes in fiber bundles, that are able to generate new relevant physical gauge symmetries in the theory. We discuss the geometry involved in the standard approach (Noether-like) and in the new Scultping-like one and comment on possible new applications.Comment: 9 pages, latex, Notation and typos reviewed, more clear explanations, results unchange

    Sculpting multi-dimensional nested structures

    Get PDF
    Special Issue: Shape Modeling International (SMI) Conference 2013International audienceSolid shape is typically segmented into surface regions to define the appearance and function of parts of the shape; these regions in turn use curve networks to represent boundaries and creases, and feature points to mark corners and other shape landmarks. Conceptual modeling requires these multi-dimensional nested structures to persist throughout the modeling process, an aspect not supported, up to now, in free-form sculpting systems. We present the first shape sculpting framework that preserves and controls the evolution of such nested shape features. We propose a range of geometric and topological behaviors (such as rigidity or mutability) applied hierarchically to points, curves or surfaces in response to a set of typical free-form sculpting operations, such as stretch, shrink, split or merge. Our method is illustrated within a free-form sculpting system for self-adaptive quasi-uniform polygon meshes, where geometric and topology changes resulting from sculpting operations are applied to points, edges and triangular facets. We thus facilitate, for example, the persistence of sharp features that automatically split or merge with variable rigidity, even when the shape changes genus. Sculpting nested structures expands the capabilities of most conceptual design workflows, as exhibited by a suite of models created by our system

    Focus+Context via Snaking Paths

    Get PDF
    Focus+context visualizations reveal specific structures in high detail while effectively depicting its surroundings, often relying on transitions between the two areas to provide context. We present an approach to generate focus+context visualizations depicting cylindrical structures along snaking paths that enables the structures themselves to become the transitions and focal areas, simultaneously. A method to automatically create a snaking path through space by applying a path finding algorithm is presented. A 3D curve is created based on the 2D snaking path. We describe a process to deform cylindrical structures in segmented volumetric models to match the curve and provide preliminary geometric models as templates for artists to build upon. Structures are discovered using our constrained volumetric sculpting method that enables removal of occluding material while leaving them intact. We find the resulting visualizations effectively mimic a set of motivating illustrations and discuss some limitations of the automatic approach

    Shape manipulation using physically based wire deformations

    Get PDF
    This paper develops an efficient, physically based shape manipulation technique. It defines a 3D model with profile curves, and uses spine curves generated from the profile curves to control the motion and global shape of 3D models. Profile and spine curves are changed into profile and spine wires by specifying proper material and geometric properties together with external forces. The underlying physics is introduced to deform profile and spine wires through the closed form solution to ordinary differential equations for axial and bending deformations. With the proposed approach, global shape changes are achieved through manipulating spine wires, and local surface details are created by deforming profile wires. A number of examples are presented to demonstrate the applications of our proposed approach in shape manipulation
    • …
    corecore