67 research outputs found

    Wearable and Nearable Biosensors and Systems for Healthcare

    Get PDF
    Biosensors and systems in the form of wearables and “nearables” (i.e., everyday sensorized objects with transmitting capabilities such as smartphones) are rapidly evolving for use in healthcare. Unlike conventional approaches, these technologies can enable seamless or on-demand physiological monitoring, anytime and anywhere. Such monitoring can help transform healthcare from the current reactive, one-size-fits-all, hospital-centered approach into a future proactive, personalized, decentralized structure. Wearable and nearable biosensors and systems have been made possible through integrated innovations in sensor design, electronics, data transmission, power management, and signal processing. Although much progress has been made in this field, many open challenges for the scientific community remain, especially for those applications requiring high accuracy. This book contains the 12 papers that constituted a recent Special Issue of Sensors sharing the same title. The aim of the initiative was to provide a collection of state-of-the-art investigations on wearables and nearables, in order to stimulate technological advances and the use of the technology to benefit healthcare. The topics covered by the book offer both depth and breadth pertaining to wearable and nearable technology. They include new biosensors and data transmission techniques, studies on accelerometers, signal processing, and cardiovascular monitoring, clinical applications, and validation of commercial devices

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 13th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2022, held in Hamburg, Germany, in May 2022. The 36 regular papers included in this book were carefully reviewed and selected from 129 submissions. They were organized in topical sections as follows: haptic science; haptic technology; and haptic applications

    Toward Robust Video Event Detection and Retrieval Under Adversarial Constraints

    Get PDF
    The continuous stream of videos that are uploaded and shared on the Internet has been leveraged by computer vision researchers for a myriad of detection and retrieval tasks, including gesture detection, copy detection, face authentication, etc. However, the existing state-of-the-art event detection and retrieval techniques fail to deal with several real-world challenges (e.g., low resolution, low brightness and noise) under adversary constraints. This dissertation focuses on these challenges in realistic scenarios and demonstrates practical methods to address the problem of robustness and efficiency within video event detection and retrieval systems in five application settings (namely, CAPTCHA decoding, face liveness detection, reconstructing typed input on mobile devices, video confirmation attack, and content-based copy detection). Specifically, for CAPTCHA decoding, I propose an automated approach which can decode moving-image object recognition (MIOR) CAPTCHAs faster than humans. I showed that not only are there inherent weaknesses in current MIOR CAPTCHA designs, but that several obvious countermeasures (e.g., extending the length of the codeword) are not viable. More importantly, my work highlights the fact that the choice of underlying hard problem selected by the designers of a leading commercial solution falls into a solvable subclass of computer vision problems. For face liveness detection, I introduce a novel approach to bypass modern face authentication systems. More specifically, by leveraging a handful of pictures of the target user taken from social media, I show how to create realistic, textured, 3D facial models that undermine the security of widely used face authentication solutions. My framework makes use of virtual reality (VR) systems, incorporating along the way the ability to perform animations (e.g., raising an eyebrow or smiling) of the facial model, in order to trick liveness detectors into believing that the 3D model is a real human face. I demonstrate that such VR-based spoofing attacks constitute a fundamentally new class of attacks that point to a serious weaknesses in camera-based authentication systems. For reconstructing typed input on mobile devices, I proposed a method that successfully transcribes the text typed on a keyboard by exploiting video of the user typing, even from significant distances and from repeated reflections. This feat allows us to reconstruct typed input from the image of a mobile phone’s screen on a user’s eyeball as reflected through a nearby mirror, extending the privacy threat to include situations where the adversary is located around a corner from the user. To assess the viability of a video confirmation attack, I explored a technique that exploits the emanations of changes in light to reveal the programs being watched. I leverage the key insight that the observable emanations of a display (e.g., a TV or monitor) during presentation of the viewing content induces a distinctive flicker pattern that can be exploited by an adversary. My proposed approach works successfully in a number of practical scenarios, including (but not limited to) observations of light effusions through the windows, on the back wall, or off the victim’s face. My empirical results show that I can successfully confirm hypotheses while capturing short recordings (typically less than 4 minutes long) of the changes in brightness from the victim’s display from a distance of 70 meters. Lastly, for content-based copy detection, I take advantage of a new temporal feature to index a reference library in a manner that is robust to the popular spatial and temporal transformations in pirated videos. My technique narrows the detection gap in the important area of temporal transformations applied by would-be pirates. My large-scale evaluation on real-world data shows that I can successfully detect infringing content from movies and sports clips with 90.0% precision at a 71.1% recall rate, and can achieve that accuracy at an average time expense of merely 5.3 seconds, outperforming the state of the art by an order of magnitude.Doctor of Philosoph

    State of the art of audio- and video based solutions for AAL

    Get PDF
    Working Group 3. Audio- and Video-based AAL ApplicationsIt is a matter of fact that Europe is facing more and more crucial challenges regarding health and social care due to the demographic change and the current economic context. The recent COVID-19 pandemic has stressed this situation even further, thus highlighting the need for taking action. Active and Assisted Living (AAL) technologies come as a viable approach to help facing these challenges, thanks to the high potential they have in enabling remote care and support. Broadly speaking, AAL can be referred to as the use of innovative and advanced Information and Communication Technologies to create supportive, inclusive and empowering applications and environments that enable older, impaired or frail people to live independently and stay active longer in society. AAL capitalizes on the growing pervasiveness and effectiveness of sensing and computing facilities to supply the persons in need with smart assistance, by responding to their necessities of autonomy, independence, comfort, security and safety. The application scenarios addressed by AAL are complex, due to the inherent heterogeneity of the end-user population, their living arrangements, and their physical conditions or impairment. Despite aiming at diverse goals, AAL systems should share some common characteristics. They are designed to provide support in daily life in an invisible, unobtrusive and user-friendly manner. Moreover, they are conceived to be intelligent, to be able to learn and adapt to the requirements and requests of the assisted people, and to synchronise with their specific needs. Nevertheless, to ensure the uptake of AAL in society, potential users must be willing to use AAL applications and to integrate them in their daily environments and lives. In this respect, video- and audio-based AAL applications have several advantages, in terms of unobtrusiveness and information richness. Indeed, cameras and microphones are far less obtrusive with respect to the hindrance other wearable sensors may cause to one’s activities. In addition, a single camera placed in a room can record most of the activities performed in the room, thus replacing many other non-visual sensors. Currently, video-based applications are effective in recognising and monitoring the activities, the movements, and the overall conditions of the assisted individuals as well as to assess their vital parameters (e.g., heart rate, respiratory rate). Similarly, audio sensors have the potential to become one of the most important modalities for interaction with AAL systems, as they can have a large range of sensing, do not require physical presence at a particular location and are physically intangible. Moreover, relevant information about individuals’ activities and health status can derive from processing audio signals (e.g., speech recordings). Nevertheless, as the other side of the coin, cameras and microphones are often perceived as the most intrusive technologies from the viewpoint of the privacy of the monitored individuals. This is due to the richness of the information these technologies convey and the intimate setting where they may be deployed. Solutions able to ensure privacy preservation by context and by design, as well as to ensure high legal and ethical standards are in high demand. After the review of the current state of play and the discussion in GoodBrother, we may claim that the first solutions in this direction are starting to appear in the literature. A multidisciplinary 4 debate among experts and stakeholders is paving the way towards AAL ensuring ergonomics, usability, acceptance and privacy preservation. The DIANA, PAAL, and VisuAAL projects are examples of this fresh approach. This report provides the reader with a review of the most recent advances in audio- and video-based monitoring technologies for AAL. It has been drafted as a collective effort of WG3 to supply an introduction to AAL, its evolution over time and its main functional and technological underpinnings. In this respect, the report contributes to the field with the outline of a new generation of ethical-aware AAL technologies and a proposal for a novel comprehensive taxonomy of AAL systems and applications. Moreover, the report allows non-technical readers to gather an overview of the main components of an AAL system and how these function and interact with the end-users. The report illustrates the state of the art of the most successful AAL applications and functions based on audio and video data, namely (i) lifelogging and self-monitoring, (ii) remote monitoring of vital signs, (iii) emotional state recognition, (iv) food intake monitoring, activity and behaviour recognition, (v) activity and personal assistance, (vi) gesture recognition, (vii) fall detection and prevention, (viii) mobility assessment and frailty recognition, and (ix) cognitive and motor rehabilitation. For these application scenarios, the report illustrates the state of play in terms of scientific advances, available products and research project. The open challenges are also highlighted. The report ends with an overview of the challenges, the hindrances and the opportunities posed by the uptake in real world settings of AAL technologies. In this respect, the report illustrates the current procedural and technological approaches to cope with acceptability, usability and trust in the AAL technology, by surveying strategies and approaches to co-design, to privacy preservation in video and audio data, to transparency and explainability in data processing, and to data transmission and communication. User acceptance and ethical considerations are also debated. Finally, the potentials coming from the silver economy are overviewed.publishedVersio

    Real-time hand gesture recognition exploiting multiple 2D and 3D cues

    Get PDF
    The recent introduction of several 3D applications and stereoscopic display technologies has created the necessity of novel human-machine interfaces. The traditional input devices, such as keyboard and mouse, are not able to fully exploit the potential of these interfaces and do not offer a natural interaction. Hand gestures provide, instead, a more natural and sometimes safer way of interacting with computers and other machines without touching them. The use cases for gesture-based interfaces range from gaming to automatic sign language interpretation, health care, robotics, and vehicle automation. Automatic gesture recognition is a challenging problem that has been attaining a growing interest in the research field for several years due to its applications in natural interfaces. The first approaches, based on the recognition from 2D color pictures or video only, suffered of the typical problems characterizing such type of data. Inter occlusions, different skin colors among users even of the same ethnic group and unstable illumination conditions, in facts, often made this problem intractable. Other approaches, instead, solved the previous problems by making the user wear sensorized gloves or hold proper tools designed to help the hand localization in the scene. The recent introduction in the mass market of novel low-cost range cameras, like the Microsoft Kinect, Asus XTION, Creative Senz3D, and the Leap Motion, has opened the way to innovative gesture recognition approaches exploiting the geometry of the framed scene. Most methods share a common gesture recognition pipeline based on firstly identifying the hand in the framed scene, then extracting some relevant features on the hand samples and finally exploiting suitable machine learning techniques in order to recognize the performed gesture from a predefined ``gesture dictionary''. This thesis, based on the previous rationale, proposes a novel gesture recognition framework exploiting both color and geometric cues from low-cost color and range cameras. The dissertation starts by introducing the automatic hand gesture recognition problem, giving an overview of the state-of-art algorithms and the recognition pipeline employed in this work. Then, it briefly describes the major low-cost range cameras and setups used in literature for color and depth data acquisition for hand gesture recognition purposes, highlighting their capabilities and limitations. The methods employed for respectively detecting the hand in the framed scene and segmenting it in its relevant parts are then analyzed with a higher level of detail. The algorithm first exploits skin color information and geometrical considerations for discarding the background samples, then it reliably detects the palm and the finger regions, and removes the forearm. For the palm detection, the method fits the largest circle inscribed in the palm region or, in a more advanced version, an ellipse. A set of robust color and geometric features which can be extracted from the fingers and palm regions, previously segmented, is then illustrated accurately. Geometric features describe properties of the hand contour from its curvature variations, the distances in the 3D space or in the image plane of its points from the hand center or from the palm, or extract relevant information from the palm morphology and from the empty space in the hand convex hull. Color features exploit, instead, the histogram of oriented gradients (HOG), local phase quantization (LPQ) and local ternary patterns (LTP) algorithms to provide further helpful cues from the hand texture and the depth map treated as a grayscale image. Additional features extracted from the Leap Motion data complete the gesture characterization for a more reliable recognition. Moreover, the thesis also reports a novel approach jointly exploiting the geometric data provided by the Leap Motion and the depth data from a range camera for extracting the same depth features with a significantly lower computational effort. This work then addresses the delicate problem of constructing a robust gesture recognition model from the features previously described, using multi-class Support Vector Machines, Random Forests or more powerful ensembles of classifiers. Feature selection techniques, designed to detect the smallest subset of features that allow to train a leaner classification model without a significant accuracy loss, are also considered. The proposed recognition method, tested on subsets of the American Sign Language and experimentally validated, reported very high accuracies. The results showed also how higher accuracies are obtainable by combining proper sets of complementary features and using ensembles of classifiers. Moreover, it is worth noticing that the proposed approach is not sensor dependent, that is, the recognition algorithm is not bound to a specific sensor or technology adopted for the depth data acquisition. Eventually, the gesture recognition algorithm is able to run in real-time even in absence of a thorough optimization, and may be easily extended in a near future with novel descriptors and the support for dynamic gestures

    Advanced Signal Processing in Wearable Sensors for Health Monitoring

    Get PDF
    Smart, wearables devices on a miniature scale are becoming increasingly widely available, typically in the form of smart watches and other connected devices. Consequently, devices to assist in measurements such as electroencephalography (EEG), electrocardiogram (ECG), electromyography (EMG), blood pressure (BP), photoplethysmography (PPG), heart rhythm, respiration rate, apnoea, and motion detection are becoming more available, and play a significant role in healthcare monitoring. The industry is placing great emphasis on making these devices and technologies available on smart devices such as phones and watches. Such measurements are clinically and scientifically useful for real-time monitoring, long-term care, and diagnosis and therapeutic techniques. However, a pertaining issue is that recorded data are usually noisy, contain many artefacts, and are affected by external factors such as movements and physical conditions. In order to obtain accurate and meaningful indicators, the signal has to be processed and conditioned such that the measurements are accurate and free from noise and disturbances. In this context, many researchers have utilized recent technological advances in wearable sensors and signal processing to develop smart and accurate wearable devices for clinical applications. The processing and analysis of physiological signals is a key issue for these smart wearable devices. Consequently, ongoing work in this field of study includes research on filtration, quality checking, signal transformation and decomposition, feature extraction and, most recently, machine learning-based methods

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 12th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2020, held in Leiden, The Netherlands, in September 2020. The 60 papers presented in this volume were carefully reviewed and selected from 111 submissions. The were organized in topical sections on haptic science, haptic technology, and haptic applications. This year's focus is on accessibility

    State of the Art of Audio- and Video-Based Solutions for AAL

    Get PDF
    It is a matter of fact that Europe is facing more and more crucial challenges regarding health and social care due to the demographic change and the current economic context. The recent COVID-19 pandemic has stressed this situation even further, thus highlighting the need for taking action. Active and Assisted Living technologies come as a viable approach to help facing these challenges, thanks to the high potential they have in enabling remote care and support. Broadly speaking, AAL can be referred to as the use of innovative and advanced Information and Communication Technologies to create supportive, inclusive and empowering applications and environments that enable older, impaired or frail people to live independently and stay active longer in society. AAL capitalizes on the growing pervasiveness and effectiveness of sensing and computing facilities to supply the persons in need with smart assistance, by responding to their necessities of autonomy, independence, comfort, security and safety. The application scenarios addressed by AAL are complex, due to the inherent heterogeneity of the end-user population, their living arrangements, and their physical conditions or impairment. Despite aiming at diverse goals, AAL systems should share some common characteristics. They are designed to provide support in daily life in an invisible, unobtrusive and user-friendly manner. Moreover, they are conceived to be intelligent, to be able to learn and adapt to the requirements and requests of the assisted people, and to synchronise with their specific needs. Nevertheless, to ensure the uptake of AAL in society, potential users must be willing to use AAL applications and to integrate them in their daily environments and lives. In this respect, video- and audio-based AAL applications have several advantages, in terms of unobtrusiveness and information richness. Indeed, cameras and microphones are far less obtrusive with respect to the hindrance other wearable sensors may cause to one’s activities. In addition, a single camera placed in a room can record most of the activities performed in the room, thus replacing many other non-visual sensors. Currently, video-based applications are effective in recognising and monitoring the activities, the movements, and the overall conditions of the assisted individuals as well as to assess their vital parameters. Similarly, audio sensors have the potential to become one of the most important modalities for interaction with AAL systems, as they can have a large range of sensing, do not require physical presence at a particular location and are physically intangible. Moreover, relevant information about individuals’ activities and health status can derive from processing audio signals. Nevertheless, as the other side of the coin, cameras and microphones are often perceived as the most intrusive technologies from the viewpoint of the privacy of the monitored individuals. This is due to the richness of the information these technologies convey and the intimate setting where they may be deployed. Solutions able to ensure privacy preservation by context and by design, as well as to ensure high legal and ethical standards are in high demand. After the review of the current state of play and the discussion in GoodBrother, we may claim that the first solutions in this direction are starting to appear in the literature. A multidisciplinary debate among experts and stakeholders is paving the way towards AAL ensuring ergonomics, usability, acceptance and privacy preservation. The DIANA, PAAL, and VisuAAL projects are examples of this fresh approach. This report provides the reader with a review of the most recent advances in audio- and video-based monitoring technologies for AAL. It has been drafted as a collective effort of WG3 to supply an introduction to AAL, its evolution over time and its main functional and technological underpinnings. In this respect, the report contributes to the field with the outline of a new generation of ethical-aware AAL technologies and a proposal for a novel comprehensive taxonomy of AAL systems and applications. Moreover, the report allows non-technical readers to gather an overview of the main components of an AAL system and how these function and interact with the end-users. The report illustrates the state of the art of the most successful AAL applications and functions based on audio and video data, namely lifelogging and self-monitoring, remote monitoring of vital signs, emotional state recognition, food intake monitoring, activity and behaviour recognition, activity and personal assistance, gesture recognition, fall detection and prevention, mobility assessment and frailty recognition, and cognitive and motor rehabilitation. For these application scenarios, the report illustrates the state of play in terms of scientific advances, available products and research project. The open challenges are also highlighted. The report ends with an overview of the challenges, the hindrances and the opportunities posed by the uptake in real world settings of AAL technologies. In this respect, the report illustrates the current procedural and technological approaches to cope with acceptability, usability and trust in the AAL technology, by surveying strategies and approaches to co-design, to privacy preservation in video and audio data, to transparency and explainability in data processing, and to data transmission and communication. User acceptance and ethical considerations are also debated. Finally, the potentials coming from the silver economy are overviewed
    • …
    corecore