6,367 research outputs found

    CP3: Unifying Point Cloud Completion by Pretrain-Prompt-Predict Paradigm

    Full text link
    Point cloud completion aims to predict complete shape from its partial observation. Current approaches mainly consist of generation and refinement stages in a coarse-to-fine style. However, the generation stage often lacks robustness to tackle different incomplete variations, while the refinement stage blindly recovers point clouds without the semantic awareness. To tackle these challenges, we unify point cloud Completion by a generic Pretrain-Prompt-Predict paradigm, namely CP3. Inspired by prompting approaches from NLP, we creatively reinterpret point cloud generation and refinement as the prompting and predicting stages, respectively. Then, we introduce a concise self-supervised pretraining stage before prompting. It can effectively increase robustness of point cloud generation, by an Incompletion-Of-Incompletion (IOI) pretext task. Moreover, we develop a novel Semantic Conditional Refinement (SCR) network at the predicting stage. It can discriminatively modulate multi-scale refinement with the guidance of semantics. Finally, extensive experiments demonstrate that our CP3 outperforms the state-of-the-art methods with a large margin

    Point-PC: Point Cloud Completion Guided by Prior Knowledge via Causal Inference

    Full text link
    Point cloud completion aims to recover raw point clouds captured by scanners from partial observations caused by occlusion and limited view angles. Many approaches utilize a partial-complete paradigm in which missing parts are directly predicted by a global feature learned from partial inputs. This makes it hard to recover details because the global feature is unlikely to capture the full details of all missing parts. In this paper, we propose a novel approach to point cloud completion called Point-PC, which uses a memory network to retrieve shape priors and designs an effective causal inference model to choose missing shape information as additional geometric information to aid point cloud completion. Specifically, we propose a memory operating mechanism where the complete shape features and the corresponding shapes are stored in the form of ``key-value'' pairs. To retrieve similar shapes from the partial input, we also apply a contrastive learning-based pre-training scheme to transfer features of incomplete shapes into the domain of complete shape features. Moreover, we use backdoor adjustment to get rid of the confounder, which is a part of the shape prior that has the same semantic structure as the partial input. Experimental results on the ShapeNet-55, PCN, and KITTI datasets demonstrate that Point-PC performs favorably against the state-of-the-art methods

    Variational Relational Point Completion Network for Robust 3D Classification

    Full text link
    Real-scanned point clouds are often incomplete due to viewpoint, occlusion, and noise, which hampers 3D geometric modeling and perception. Existing point cloud completion methods tend to generate global shape skeletons and hence lack fine local details. Furthermore, they mostly learn a deterministic partial-to-complete mapping, but overlook structural relations in man-made objects. To tackle these challenges, this paper proposes a variational framework, Variational Relational point Completion Network (VRCNet) with two appealing properties: 1) Probabilistic Modeling. In particular, we propose a dual-path architecture to enable principled probabilistic modeling across partial and complete clouds. One path consumes complete point clouds for reconstruction by learning a point VAE. The other path generates complete shapes for partial point clouds, whose embedded distribution is guided by distribution obtained from the reconstruction path during training. 2) Relational Enhancement. Specifically, we carefully design point self-attention kernel and point selective kernel module to exploit relational point features, which refines local shape details conditioned on the coarse completion. In addition, we contribute multi-view partial point cloud datasets (MVP and MVP-40 dataset) containing over 200,000 high-quality scans, which render partial 3D shapes from 26 uniformly distributed camera poses for each 3D CAD model. Extensive experiments demonstrate that VRCNet outperforms state-of-the-art methods on all standard point cloud completion benchmarks. Notably, VRCNet shows great generalizability and robustness on real-world point cloud scans. Moreover, we can achieve robust 3D classification for partial point clouds with the help of VRCNet, which can highly increase classification accuracy.Comment: 12 pages, 10 figures, accepted by PAMI. project webpage: https://mvp-dataset.github.io/. arXiv admin note: substantial text overlap with arXiv:2104.1015

    Snowflake Point Deconvolution for Point Cloud Completion and Generation with Skip-Transformer

    Full text link
    Most existing point cloud completion methods suffer from the discrete nature of point clouds and the unstructured prediction of points in local regions, which makes it difficult to reveal fine local geometric details. To resolve this issue, we propose SnowflakeNet with snowflake point deconvolution (SPD) to generate complete point clouds. SPD models the generation of point clouds as the snowflake-like growth of points, where child points are generated progressively by splitting their parent points after each SPD. Our insight into the detailed geometry is to introduce a skip-transformer in the SPD to learn the point splitting patterns that can best fit the local regions. The skip-transformer leverages attention mechanism to summarize the splitting patterns used in the previous SPD layer to produce the splitting in the current layer. The locally compact and structured point clouds generated by SPD precisely reveal the structural characteristics of the 3D shape in local patches, which enables us to predict highly detailed geometries. Moreover, since SPD is a general operation that is not limited to completion, we explore its applications in other generative tasks, including point cloud auto-encoding, generation, single image reconstruction, and upsampling. Our experimental results outperform state-of-the-art methods under widely used benchmarks.Comment: IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2022. This work is a journal extension of our ICCV 2021 paper arXiv:2108.04444 . The first two authors contributed equall
    • …
    corecore