330 research outputs found

    Intrinsically-generated fluctuating activity in excitatory-inhibitory networks

    Get PDF
    Recurrent networks of non-linear units display a variety of dynamical regimes depending on the structure of their synaptic connectivity. A particularly remarkable phenomenon is the appearance of strongly fluctuating, chaotic activity in networks of deterministic, but randomly connected rate units. How this type of intrinsi- cally generated fluctuations appears in more realistic networks of spiking neurons has been a long standing question. To ease the comparison between rate and spiking networks, recent works investigated the dynami- cal regimes of randomly-connected rate networks with segregated excitatory and inhibitory populations, and firing rates constrained to be positive. These works derived general dynamical mean field (DMF) equations describing the fluctuating dynamics, but solved these equations only in the case of purely inhibitory networks. Using a simplified excitatory-inhibitory architecture in which DMF equations are more easily tractable, here we show that the presence of excitation qualitatively modifies the fluctuating activity compared to purely inhibitory networks. In presence of excitation, intrinsically generated fluctuations induce a strong increase in mean firing rates, a phenomenon that is much weaker in purely inhibitory networks. Excitation moreover induces two different fluctuating regimes: for moderate overall coupling, recurrent inhibition is sufficient to stabilize fluctuations, for strong coupling, firing rates are stabilized solely by the upper bound imposed on activity, even if inhibition is stronger than excitation. These results extend to more general network architectures, and to rate networks receiving noisy inputs mimicking spiking activity. Finally, we show that signatures of the second dynamical regime appear in networks of integrate-and-fire neurons

    Noise-induced behaviors in neural mean field dynamics

    Full text link
    The collective behavior of cortical neurons is strongly affected by the presence of noise at the level of individual cells. In order to study these phenomena in large-scale assemblies of neurons, we consider networks of firing-rate neurons with linear intrinsic dynamics and nonlinear coupling, belonging to a few types of cell populations and receiving noisy currents. Asymptotic equations as the number of neurons tends to infinity (mean field equations) are rigorously derived based on a probabilistic approach. These equations are implicit on the probability distribution of the solutions which generally makes their direct analysis difficult. However, in our case, the solutions are Gaussian, and their moments satisfy a closed system of nonlinear ordinary differential equations (ODEs), which are much easier to study than the original stochastic network equations, and the statistics of the empirical process uniformly converge towards the solutions of these ODEs. Based on this description, we analytically and numerically study the influence of noise on the collective behaviors, and compare these asymptotic regimes to simulations of the network. We observe that the mean field equations provide an accurate description of the solutions of the network equations for network sizes as small as a few hundreds of neurons. In particular, we observe that the level of noise in the system qualitatively modifies its collective behavior, producing for instance synchronized oscillations of the whole network, desynchronization of oscillating regimes, and stabilization or destabilization of stationary solutions. These results shed a new light on the role of noise in shaping collective dynamics of neurons, and gives us clues for understanding similar phenomena observed in biological networks

    Mean-field equations for stochastic firing-rate neural fields with delays: Derivation and noise-induced transitions

    Full text link
    In this manuscript we analyze the collective behavior of mean-field limits of large-scale, spatially extended stochastic neuronal networks with delays. Rigorously, the asymptotic regime of such systems is characterized by a very intricate stochastic delayed integro-differential McKean-Vlasov equation that remain impenetrable, leaving the stochastic collective dynamics of such networks poorly understood. In order to study these macroscopic dynamics, we analyze networks of firing-rate neurons, i.e. with linear intrinsic dynamics and sigmoidal interactions. In that case, we prove that the solution of the mean-field equation is Gaussian, hence characterized by its two first moments, and that these two quantities satisfy a set of coupled delayed integro-differential equations. These equations are similar to usual neural field equations, and incorporate noise levels as a parameter, allowing analysis of noise-induced transitions. We identify through bifurcation analysis several qualitative transitions due to noise in the mean-field limit. In particular, stabilization of spatially homogeneous solutions, synchronized oscillations, bumps, chaotic dynamics, wave or bump splitting are exhibited and arise from static or dynamic Turing-Hopf bifurcations. These surprising phenomena allow further exploring the role of noise in the nervous system.Comment: Updated to the latest version published, and clarified the dependence in space of Brownian motion

    Balanced neural architecture and the idling brain

    Get PDF
    A signature feature of cortical spike trains is their trial-to-trial variability. This variability is large in the spontaneous state and is reduced when cortex is driven by a stimulus or task. Models of recurrent cortical networks with unstructured, yet balanced, excitation and inhibition generate variability consistent with evoked conditions. However, these models produce spike trains which lack the long timescale fluctuations and large variability exhibited during spontaneous cortical dynamics. We propose that global network architectures which support a large number of stable states (attractor networks) allow balanced networks to capture key features of neural variability in both spontaneous and evoked conditions. We illustrate this using balanced spiking networks with clustered assembly, feedforward chain, and ring structures. By assuming that global network structure is related to stimulus preference, we show that signal correlations are related to the magnitude of correlations in the spontaneous state. Finally, we contrast the impact of stimulation on the trial-to-trial variability in attractor networks with that of strongly coupled spiking networks with chaotic firing rate instabilities, recently investigated by Ostojic (2014). We find that only attractor networks replicate an experimentally observed stimulus-induced quenching of trial-to-trial variability. In total, the comparison of the trial-variable dynamics of single neurons or neuron pairs during spontaneous and evoked activity can be a window into the global structure of balanced cortical networks. © 2014 Doiron and Litwin-Kumar

    Synchronously-pumped OPO coherent Ising machine: benchmarking and prospects

    Get PDF
    The coherent Ising machine (CIM) is a network of optical parametric oscillators (OPOs) that solves for the ground state of Ising problems through OPO bifurcation dynamics. Here, we present experimental results comparing the performance of the CIM to quantum annealers (QAs) on two classes of NP-hard optimization problems: ground state calculation of the Sherrington-Kirkpatrick (SK) model and MAX-CUT. While the two machines perform comparably on sparsely-connected problems such as cubic MAX-CUT, on problems with dense connectivity, the QA shows an exponential performance penalty relative to CIMs. We attribute this to the embedding overhead required to map dense problems onto the sparse hardware architecture of the QA, a problem that can be overcome in photonic architectures such as the CIM

    Inferring network properties of cortical neurons with synaptic coupling and parameter dispersion

    Get PDF
    Computational models at different space-time scales allow us to understand the fundamental mechanisms that govern neural processes and relate uniquely these processes to neuroscience data. In this work, we propose a novel neurocomputational unit (a mesoscopic model which tell us about the interaction between local cortical nodes in a large scale neural mass model) of bursters that qualitatively captures the complex dynamics exhibited by a full network of parabolic bursting neurons. We observe that the temporal dynamics and fluctuation of mean synaptic action term exhibits a high degree of correlation with the spike/burst activity of our population. With heterogeneity in the applied drive and mean synaptic coupling derived from fast excitatory synapse approximations we observe long term behavior in our population dynamics such as partial oscillations, incoherence, and synchrony. In order to understand the origin of multistability at the population level as a function of mean synaptic coupling and heterogeneity in the firing rate threshold we employ a simple generative model for parabolic bursting recently proposed by Ghosh et al. (2009). Further, we use here a mean coupling formulated for fast spiking neurons for our analysis of generic model. Stability analysis of this mean field network allow us to identify all the relevant network states found in the detailed biophysical model. We derive here analytically several boundary solutions, a result which holds for any number of spikes per burst. These findings illustrate the role of oscillations occurring at slow time scales (bursts) on the global behavior of the network.EC/FP7/269921/EU/Brain-inspired multiscale computation in neuromorphic hybrid systems/BrainScale

    Noise-enhanced spatial-photonic Ising machine

    Get PDF
    Ising machines are novel computing devices for the energy minimization of Ising models. These combinatorial optimization problems are of paramount importance for science and technology, but remain difficult to tackle on large scale by conventional electronics. Recently, various photonics-based Ising machines demonstrated fast computing of a Ising ground state by data processing through multiple temporal or spatial optical channels. Experimental noise acts as a detrimental effect in many of these devices. On the contrary, here we demonstrate that an optimal noise level enhances the performance of spatial-photonic Ising machines on frustrated spin problems. By controlling the error rate at the detection, we introduce a noisy-feedback mechanism in an Ising machine based on spatial light modulation. We investigate the device performance on systems with hundreds of individually-addressable spins with all-to-all couplings and we found an increased success probability at a specific noise level. The optimal noise amplitude depends on graph properties and size, thus indicating an additional tunable parameter helpful in exploring complex energy landscapes and in avoiding getting stuck in local minima. Our experimental results identify noise as a potentially valuable resource for optical computing. This concept, which also holds in different nanophotonic neural networks, may be crucial in developing novel hardware with optics-enabled parallel architecture for large-scale optimizations

    Synchronously-pumped OPO coherent Ising machine: benchmarking and prospects

    Get PDF
    The coherent Ising machine (CIM) is a network of optical parametric oscillators (OPOs) that solves for the ground state of Ising problems through OPO bifurcation dynamics. Here, we present experimental results comparing the performance of the CIM to quantum annealers (QAs) on two classes of NP-hard optimization problems: ground state calculation of the Sherrington-Kirkpatrick (SK) model and MAX-CUT. While the two machines perform comparably on sparsely-connected problems such as cubic MAX-CUT, on problems with dense connectivity, the QA shows an exponential performance penalty relative to CIMs. We attribute this to the embedding overhead required to map dense problems onto the sparse hardware architecture of the QA, a problem that can be overcome in photonic architectures such as the CIM

    Combinatorial Optimization with Photonics-Inspired Clock Models

    Full text link
    NP-hard combinatorial optimization problems are in general hard problems that their computational complexity grows faster than polynomial scaling with the size of the problem. Thus, over the years there has been a great interest in developing unconventional methods and algorithms for solving such problems. Here, inspired by the nonlinear optical process of q-photon down-conversion, in which a photon is converted into q degenerate lower energy photons, we introduce a nonlinear dynamical model that builds on coupled single-variable phase oscillators and allows for efficiently approximating the ground state of the classical q-state planar Potts Hamiltonian. This reduces the exhaustive search in the large discrete solution space of a large class of combinatorial problems that are represented by the Potts Hamiltonian to solving a system of coupled dynamical equations. To reduce the problem of trapping into local minima, we introduce two different mechanisms by utilizing controlled chaotic dynamics and by dynamical formation of the cost function through adiabatic parameter tuning. The proposed algorithm is applied to graph-q-partitioning problems on several complex graphs
    corecore