35 research outputs found

    An Effective Ultrasound Video Communication System Using Despeckle Filtering and HEVC

    Get PDF
    The recent emergence of the high-efficiency video coding (HEVC) standard promises to deliver significant bitrate savings over current and prior video compression standards, while also supporting higher resolutions that can meet the clinical acquisition spatiotemporal settings. The effective application of HEVC to medical ultrasound necessitates a careful evaluation of strict clinical criteria that guarantee that clinical quality will not be sacrificed in the compression process. Furthermore, the potential use of despeckle filtering prior to compression provides for the possibility of significant additional bitrate savings that have not been previously considered. This paper provides a thorough comparison of the use of MPEG-2, H.263, MPEG-4, H.264/AVC, and HEVC for compressing atherosclerotic plaque ultrasound videos. For the comparisons, we use both subjective and objective criteria based on plaque structure and motion. For comparable clinical video quality, experimental evaluation on ten videos demonstrates that HEVC reduces bitrate requirements by as much as 33.2% compared to H.264/AVC and up to 71% compared to MPEG-2. The use of despeckle filtering prior to compression is also investigated as a method that can reduce bitrate requirements through the removal of higher frequency components without sacrificing clinical quality. Based on the use of three despeckle filtering methods with both H.264/AVC and HEVC, we find that prior filtering can yield additional significant bitrate savings. The best performing despeckle filter (DsFlsmv) achieves bitrate savings of 43.6% and 39.2% compared to standard nonfiltered HEVC and H.264/AVC encoding, respectively

    Comparison of ultrasound image filtering methods by means of multivariable kurtosis

    Get PDF
    Comparison of the quality of despeckled US medical images is complicated because there is no image of a human body that would be free of speckles and could serve as a reference. A number of various image metrics are currently used for comparison of filtering methods; however, they do not satisfactorily represent the visual quality of images and medical expert’s satisfaction with images. This paper proposes an innovative use of relative multivariate kurtosis for the evaluation of the most important edges in an image. Multivariate kurtosis allows one to introduce an order among the filtered images and can be used as one of the metrics for image quality evaluation. At present there is no method which would jointly consider individual metrics. Furthermore, these metrics are typically defined by comparing the noisy original and filtered images, which is incorrect since the noisy original cannot serve as a golden standard. In contrast to this, the proposed kurtosis is the absolute measure, which is calculated independently of any reference image and it agrees with the medical expert’s satisfaction to a large extent. The paper presents a numerical procedure for calculating kurtosis and describes results of such calculations for a computer-generated noisy image, images of a general purpose phantom and a cyst phantom, as well as real-life images of thyroid and carotid artery obtained with SonixTouch ultrasound machine. 16 different methods of image despeckling are compared via kurtosis. The paper shows that visually more satisfactory despeckling results are associated with higher kurtosis, and to a certain degree kurtosis can be used as a single metric for evaluation of image quality

    FETAL CARDIAC STRUCTURE DETECTION FROM ULTRASOUND SEQUENCES

    Get PDF
    Fetal heart abnormalities are the most common congenital anomalies and are also the leading cause of infant mortality related to birth defects. More than one-third of all malformations found after delivery are congenital heart defects. The prenatal detection of fetal cardiac structure is difficult because of its small size and rapid movements but is important for the early and effective diagnosis of congenital cardiac defects. A novel method is proposed for the detection of fetal cardiac structure from ultrasound sequences. An initial pre-processing is done to remove noise and enhance the images. An effective K means clustering algorithm is applied to the images to segment the region of interest. Finally an active appearance model is proposed to detect the structure of fetal heart

    Fully automated segmentation and tracking of the intima media thickness in ultrasound video sequences of the common carotid artery

    Get PDF
    Abstract—The robust identification and measurement of the intima media thickness (IMT) has a high clinical relevance because it represents one of the most precise predictors used in the assessment of potential future cardiovascular events. To facilitate the analysis of arterial wall thickening in serial clinical investigations, in this paper we have developed a novel fully automatic algorithm for the segmentation, measurement, and tracking of the intima media complex (IMC) in B-mode ultrasound video sequences. The proposed algorithm entails a two-stage image analysis process that initially addresses the segmentation of the IMC in the first frame of the ultrasound video sequence using a model-based approach; in the second step, a novel customized tracking procedure is applied to robustly detect the IMC in the subsequent frames. For the video tracking procedure, we introduce a spatially coherent algorithm called adaptive normalized correlation that prevents the tracking process from converging to wrong arterial interfaces. This represents the main contribution of this paper and was developed to deal with inconsistencies in the appearance of the IMC over the cardiac cycle. The quantitative evaluation has been carried out on 40 ultrasound video sequences of the common carotid artery (CCA) by comparing the results returned by the developed algorithm with respect to ground truth data that has been manually annotated by clinical experts. The measured IMTmean ± standard deviation recorded by the proposed algorithm is 0.60 mm ± 0.10, with a mean coefficient of variation (CV) of 2.05%, whereas the corresponding result obtained for the manually annotated ground truth data is 0.60 mm ± 0.11 with a mean CV equal to 5.60%. The numerical results reported in this paper indicate that the proposed algorithm is able to correctly segment and track the IMC in ultrasound CCA video sequences, and we were encouraged by the stability of our technique when applied to data captured under different imaging conditions. Future clinical studies will focus on the evaluation of patients that are affected by advanced cardiovascular conditions such as focal thickening and arterial plaques

    Speckle Reduction in Echocardiography: Trends and Perceptions

    Get PDF

    Emergency TeleOrthoPaedics m-health system for wireless communication links

    Get PDF
    For the first time, a complete wireless and mobile emergency TeleOrthoPaedics system with field trials and expert opinion is presented. The system enables doctors in a remote area to obtain a second opinion from doctors in the hospital using secured wireless telecommunication networks. Doctors can exchange securely medical images and video as well as other important data, and thus perform remote consultations, fast and accurately using a user friendly interface, via a reliable and secure telemedicine system of low cost. The quality of the transmitted compressed (JPEG2000) images was measured using different metrics and doctors opinions. The results have shown that all metrics were within acceptable limits. The performance of the system was evaluated successfully under different wireless communication links based on real data

    An end-to-end framework for intima media measurement and atherosclerotic plaque detection in the carotid artery

    Full text link
    Background and objectives: The detection and delineation of atherosclerotic plaque are usually manually performed by medical experts on the carotid artery. Evidence suggests that this manual process is subject to errors and has a large variability between experts, equipment, and datasets. This paper proposes a robust end-to-end framework for automatic atherosclerotic plaque detection. Methods: The proposed framework is composed of: (1) a semantic segmentation model based on U-Net, with EfficientNet as the backbone, that obtains a segmentation mask with the carotid intima-media region; and (2) a convolutional neural network designed using Bayesian optimization that simultaneously performs a regression to get the average and maximum carotid intima media thickness, and a classification to determine the presence of plaque. Results: Our approach improves the state-of-the-art in both co and bulb territories in the REGICOR database, with more than 8000 images, while providing predictions in real-time. The correlation coefficient was 0.89 in the common carotid artery and 0.74 for bulb region, and the F1 score for atherosclerotic plaque detecting was 0.60 and 0.59, respectively. The experimentation carried out includes a comparison with other fully automatic methods for carotid intima media thickness estimation found in the literature. Additionally, we present an extensive experimental study to evaluate the robustness of our proposal, as well as its suitability and efficiency compared to different versions of the framework. Conclusions: The proposed end-to-end framework significantly improves the automatic characterization of atherosclerotic plaque. The generation of the segmented mask can be helpful for practitioners since it allows them to evaluate and interpret the model's results by visual inspection. Furthermore, the proposed framework overcomes the limitations of previous research based on ad-hoc post-processing, which could lead to overestimations in the case of oblique forms of the carotid artery

    Bimodal automated carotid ultrasound segmentation using geometrically constrained deep neural networks

    Get PDF
    For asymptomatic patients suffering from carotid stenosis, the assessment of plaque morphology is an important clinical task which allows monitoring of the risk of plaque rupture and future incidents of stroke. Ultrasound Imaging provides a safe and non-invasive modality for this, and the segmentation of media-adventitia boundaries and lumen-intima boundaries of the Carotid artery form an essential part in this monitoring process. In this paper, we propose a novel Deep Neural Network as a fully automated segmentation tool, and its application in delineating both the media-adventitia boundary and the lumen-intima boundary. We develop a new geometrically constrained objective function as part of the Network's Stochastic Gradient Descent optimisation, thus tuning it to the problem at hand. Furthermore, we also apply a bimodal fusion of amplitude and phase congruency data proposed by us in previous work, as an input to the network, as the latter provides an intensity-invariant data source to the network. We finally report the segmentation performance of the network on transverse sections of the carotid. Tests are carried out on an augmented dataset of 81,000 images, and the results are compared to other studies by reporting the DICE coefficient of similarity, modified Hausdorff Distance, sensitivity and specificity. Our proposed modification is shown to yield improved results on the standard network over this larger dataset, with the advantage of it being fully automated. We conclude that Deep Neural Networks provide a reliable trained manner in which carotid ultrasound images may be automatically segmented, using amplitude data and intensity invariant phase congruency maps as a data source

    Deep learning for the detection and characterization of the carotid artery in ultrasound imaging

    Get PDF
    Treballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona, Any: 2018, Tutor: Laura Igual Muñoz[en] Atherosclerosis is the main process causing most Cardio Vascular (CV) diseases. The measurement of Intima Media Thickness (IMT) in artery ultrasound images can be used to detect the presence of atherosclerotic plaques, which may appear in several territories of the artery. Moreover, it is well known that disruption of atherosclerotic plaque plays a crucial role in the pathogenesis of CV events. Several works have tried to automatize the detection of the IMT and the classification of the plaque by its composition. Traditionally, the methods used in the literature are semi-automatic. Furthermore, very little work has been done using Deep Learning approaches in order to solve this problems. In this thesis, we explore the effectiveness of Deep Learning techniques in attempting to automatize and improve the diagnosis of atheroma plaques. To achieve so we tackle the following problems: ultrasound image segmentation and plaque tissue classification. The techniques applied in this work are the following. For the segmentation of the common carotid artery IMT we replicate a state of the art Fully Convolutional Network approach and explore the implementation of a trained network to another dataset. Regarding the plaque classification problem, we explore the performance of Convolutional Neural Networks as well with two baseline methods. These techniques are applied on two datasets: REGICOR and NEFRONA. These datasets are provided by two research groups of IMIM and IRBLleida in collaboration in a larger project with the UB. A data exploration analysis is also presented on the patient’s data of NEFRONA to justify the importance of detecting the atherosclerotic plaques and thus the techniques we explore

    Human Attention Detection Using AM-FM Representations

    Get PDF
    Human activity detection from digital videos presents many challenges to the computer vision and image processing communities. Recently, many methods have been developed to detect human activities with varying degree of success. Yet, the general human activity detection problem remains very challenging, especially when the methods need to work “in the wild” (e.g., without having precise control over the imaging geometry). The thesis explores phase-based solutions for (i) detecting faces, (ii) back of the heads, (iii) joint detection of faces and back of the heads, and (iv) whether the head is looking to the left or the right, using standard video cameras without any control on the imaging geometry. The proposed phase-based approach is based on the development of simple and robust methods that relie on the use of Amplitude Modulation - Frequency Modulation (AM-FM) models. The approach is validated using video frames extracted from the Advancing Outof- school Learning in Mathematics and Engineering (AOLME) project. The dataset consisted of 13,265 images from ten students looking at the camera, and 6,122 images from five students looking away from the camera. For the students facing the camera, the method was able to correctly classify 97.1% of them looking to the left and 95.9% of them looking to the right. For the students facing the back of the camera, the method was able to correctly classify 87.6% of them looking to the left and 93.3% of them looking to the right. The results indicate that AM-FM based methods hold great promise for analyzing human activity videos
    corecore