5,340 research outputs found

    Desktop Micro Forming System for Micro Pattern on the Metal Substrate

    Get PDF
    Abstract. In this Research, the desktop micro forming manufacturing system has been developed. A micro forming system has been achieved in Japan and its developed micro press is limited to single forming process. To coincide with the purpose to be more practical, research and development is necessary about the press which the multi forming process is possible. Micro patterned metal components are used in so many precision engineering fields. This micro pattern plays an important part in the functional movement of precision module. This micro pattern on the metal component can be made by EDM(Electro Discharge Machining). But this EDM method has low productivity because EDM tools can be worn easily. If another manufacturing process is developed with high productivity, industries can product the competitive goods. So we research on the forming process and system to make micro functional pattern on the metal component

    Micro-manufacturing : research, technology outcomes and development issues

    Get PDF
    Besides continuing effort in developing MEMS-based manufacturing techniques, latest effort in Micro-manufacturing is also in Non-MEMS-based manufacturing. Research and technological development (RTD) in this field is encouraged by the increased demand on micro-components as well as promised development in the scaling down of the traditional macro-manufacturing processes for micro-length-scale manufacturing. This paper highlights some EU funded research activities in micro/nano-manufacturing, and gives examples of the latest development in micro-manufacturing methods/techniques, process chains, hybrid-processes, manufacturing equipment and supporting technologies/device, etc., which is followed by a summary of the achievements of the EU MASMICRO project. Finally, concluding remarks are given, which raise several issues concerning further development in micro-manufacturing

    Electrochemical metal 3D printing

    Get PDF
    Additive manufacturing (AM) is the process of creating 3D objects from digital models through the layer-by-layer deposition of materials. Electrochemical additive manufacturing (ECAM) is a relatively new technique which can create metallic components-based on depositing layers of metal onto the surface of the conductive substrate through the reduction of metal ions. It is advantageous compared to other metal AM processes due to the absence of high temperature processes enabling a lower-cost and safer fabrication process, however, to date, all of the presented ECAM methods (Localized Electrochemical Deposition (LED) and Meniscus Confined Electrochemical Deposition (MCED) have been designed to achieve micro or nanoscale structures with limited deposition rates, and only focused on single material fabrication. Furthermore, all the printed structures are limited in the complexity of geometries, with the majority being wire-based architectures of porous and rough morphologies, with limited characterisation of the properties of the printed structures. Additionally, there is no available system able to create temperature-reactive multi-metallic functional 4D structures and no research has been presented on the potential application of ECAM in the field of electrochemical energy storage devices. To bridge the gaps, this thesis investigates the development of a low-cost ECAM system capable of producing single and multi-metal structures by using multi-meniscus confined extrusion heads with volumetric deposition rates 3 times higher than what has previously been reported (~ 2×104 μm3.s-1), enabling large-scale fabrication of complex structures in multiple metallic materials. Scanning electron microscopy, X-ray computed tomography and energy dispersive X-ray spectroscopy measurements confirm that multi-metallic structures can be successfully created, with a tightly bound interface. Analysis of the thermo-mechanical properties of the printed strips shows that mechanical deformations can be generated in Cu-Ni strips at temperatures up to 300 °C, which is due to the thermal expansion coefficient mismatch generating internal stresses in the printed structures. Electrical conductivity measurements show that the bimetallic structures have a conductivity between those of nanocrystalline copper and nickel. Vicker’s hardness tests, show that there is a clear correlation between the applied potential and the hardness of the printed product, with higher potentials resulting in a harder deposition. This increased hardness was found to be due to the smaller grain sizes produced during higher potential deposition which restricted dislocation movement through the material. Finally, this thesis presents the first reported combination of electrochemical 3D printing and electrospinning for building a high mass loading and high performance copper-fibre based supercapacitor which enables the potential to create more integrated electrodes and eventually to enhance the performance of supercapacitors. The results highlight the influence of the substrate conditioning and the resulting effects on the wetting characteristics of the meniscus and the subsequent distribution of the deposition which impacts the electronic conductivity of the overall electrode. In this the fibre-based supercapacitor was constructed, the carbon was doped with manganese oxides to enhance the capacitance through introducing pseudo-capacitance at the cost of electronic conductivity. With the printing of current collectors, a highly bound electrode-current collector interface was formed, reducing the interfacial resistance and enhancing the accessible capacitance at high scan rates. In summary, this thesis presents work towards creating lower cost metal additive manufacturing through the development of an electrochemical metal 3D printer. A meniscus confined approach was taken to localise the deposition, with subsequent microstructural, mechanical and spectroscopic analysis of the printed product. Novel contributions to the field were further presented through developing understanding around multi-metal ECAM, with investigations around their coupled thermo-mechanical properties. Finally, the applicability of this approach was investigated in the field of electrochemical devices, where the influence of a porous substrate was investigated, whereby tightly bound and highly conductive current collectors were printed onto fibre based supercapacitors, enhancing their accessible capacitance. This work, therefore, demonstrates the potential for the ECAM approach in a diversity of applications.Open Acces

    Superconducting tantalum disulfide nanotapes; growth, structure and stoichiometry

    Get PDF
    Superconducting tantalum disulfide nanowires have been synthesised by surface-assisted chemical vapour transport (SACVT) methods and their crystal structure, morphology and stoichiometry studied by powder X-ray diffraction (PXD), scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and nanodiffraction. The evolution of morphology, stoichiometry and structure of materials grown by SACVT methods in the Ta-S system with reaction temperature was investigated systematically. High-aspect-ratio, superconducting disulfide nanowires are produced at intermediate reaction temperatures (650 degrees C). The superconducting wires are single crystalline, adopt the 2H polytypic structure (hexagonal space group P6(3)/mmc: a = 3.32(2) angstrom, c = 12.159(2) angstrom; c/a = 3.66) and grow in the <2<(1)over bar>(1) over bar0> direction. The nanowires are of rectangular cross-section forming nanotapes composed of bundles of much smaller fibres that grow cooperatively. At lower reaction temperatures nanowires close to a composition of TaS3 are produced whereas elevated temperatures yield platelets of 1T TaS2

    From Cleanroom to Desktop: Emerging Micro-Nanofabrication Technology for Biomedical Applications

    Get PDF
    This review is motivated by the growing demand for low-cost, easy-to-use, compact-size yet powerful micro-nanofabrication technology to address emerging challenges of fundamental biology and translational medicine in regular laboratory settings. Recent advancements in the field benefit considerably from rapidly expanding material selections, ranging from inorganics to organics and from nanoparticles to self-assembled molecules. Meanwhile a great number of novel methodologies, employing off-the-shelf consumer electronics, intriguing interfacial phenomena, bottom-up self-assembly principles, etc., have been implemented to transit micro-nanofabrication from a cleanroom environment to a desktop setup. Furthermore, the latest application of micro-nanofabrication to emerging biomedical research will be presented in detail, which includes point-of-care diagnostics, on-chip cell culture as well as bio-manipulation. While significant progresses have been made in the rapidly growing field, both apparent and unrevealed roadblocks will need to be addressed in the future. We conclude this review by offering our perspectives on the current technical challenges and future research opportunities

    Technologies for rapid prototyping (RP) - basic concepts, quality issues and modern trends

    Get PDF
    The paper describes the basics of the 3D printing technologies for rapid prototyping (RP). It shows the benefits of their utilization in product design and manufacturing of conventional parts and items with medical and other application. The most mature RP principles are presented and compared.Some trends in developing new 3D printers and corresponding materials for micro/nano and biological applications are described.  Some modern budget platforms are suggested for technology users.The paper also provides a summary of the main quality issues in the layering technologies as well as methodologies for studying the process capabilities, accuracy and maturity

    Ultrathin high-resolution flexographic printing using nanoporous stamps

    Get PDF
    Since its invention in ancient times, relief printing, commonly called flexography, has been used to mass-produce artifacts ranging from decorative graphics to printed media. Now, higher-resolution flexography is essential to manufacturing low-cost, large-area printed electronics. However, because of contact-mediated liquid instabilities and spreading, the resolution of flexographic printing using elastomeric stamps is limited to tens of micrometers. We introduce engineered nanoporous microstructures, comprising polymer-coated aligned carbon nanotubes (CNTs), as a next-generation stamp material. We design and engineer the highly porous microstructures to be wetted by colloidal inks and to transfer a thin layer to a target substrate upon brief contact. We demonstrate printing of diverse micrometer-scale patterns of a variety of functional nanoparticle inks, including Ag, ZnO, WO[subscript 3], and CdSe/ZnS, onto both rigid and compliant substrates. The printed patterns have highly uniform nanoscale thickness (5 to 50 nm) and match the stamp features with high fidelity (edge roughness, ~0.2 μm). We derive conditions for uniform printing based on nanoscale contact mechanics, characterize printed Ag lines and transparent conductors, and achieve continuous printing at a speed of 0.2 m/s. The latter represents a combination of resolution and throughput that far surpasses industrial printing technologies.Massachusetts Institute of Technology. Department of Mechanical EngineeringNational Science Foundation (U.S.) (Grant CMMI-1463181)United States. Air Force Office of Scientific Research. Young Investigator Program (Grant FA9550-11-1-0089)National Institutes of Health (U.S.) (Grant 1R21HL114011-01A1

    Micro-Electro Discharge Machining: Principles, Recent Advancements and Applications

    Get PDF
    Micro electrical discharge machining (micro-EDM) is a thermo-electric and contactless process most suited for micro-manufacturing and high-precision machining, especially when difficult-to-cut materials, such as super alloys, composites, and electro conductive ceramics, are processed. Many industrial domains exploit this technology to fabricate highly demanding components, such as high-aspect-ratio micro holes for fuel injectors, high-precision molds, and biomedical parts.Moreover, the continuous trend towards miniaturization and high precision functional components boosted the development of control strategies and optimization methodologies specifically suited to address the challenges in micro- and nano-scale fabrication.This Special Issue showcases 12 research papers and a review article focusing on novel methodological developments on several aspects of micro electrical discharge machining: machinability studies of hard materials (TiNi shape memory alloys, Si3N4–TiN ceramic composite, ZrB2-based ceramics reinforced with SiC fibers and whiskers, tungsten-cemented carbide, Ti-6Al-4V alloy, duplex stainless steel, and cubic boron nitride), process optimization adopting different dielectrics or electrodes, characterization of mechanical performance of processed surface, process analysis, and optimization via discharge pulse-type discrimination, hybrid processes, fabrication of molds for inflatable soft microactuators, and implementation of low-cost desktop micro-EDM system

    Unconventional Low-Cost Fabrication and Patterning Techniques for Point of Care Diagnostics

    Get PDF
    The potential of rapid, quantitative, and sensitive diagnosis has led to many innovative ‘lab on chip’ technologies for point of care diagnostic applications. Because these chips must be designed within strict cost constraints to be widely deployable, recent research in this area has produced extremely novel non-conventional micro- and nano-fabrication innovations. These advances can be leveraged for other biological assays as well, including for custom assay development and academic prototyping. The technologies reviewed here leverage extremely low-cost substrates and easily adoptable ways to pattern both structural and biological materials at high resolution in unprecedented ways. These new approaches offer the promise of more rapid prototyping with less investment in capital equipment as well as greater flexibility in design. Though still in their infancy, these technologies hold potential to improve upon the resolution, sensitivity, flexibility, and cost-savings over more traditional approaches
    corecore