272 research outputs found

    Performance of turbo multi-user detectors in space-time coded DS-CDMA systems

    Get PDF
    Includes bibliographical references (leaves 118-123).In this thesis we address the problem of improving the uplink capacity and the performance of a DS-CDMA system by combining MUD and turbo decoding. These two are combined following the turbo principle. Depending on the concatenation scheme used, we divide these receivers into the Partitioned Approach (PA) and the Iterative Approach (IA) receivers. To enable the iterative exchange of information, these receivers employ a Parallel Interference Cancellation (PIC) detector as the first receiver stage

    Iterative receiver in multiuser relaying systems with fast frequency-hopping modulation

    Get PDF
    In this thesis, a novel iterative receiver and its improved version are proposed for relay-assisted multiuser communications, in which multiple users transmit to a destination with the help of a relay and using fast frequency-hopping modulation. Each user employs a channel encoder to protect its information and facilitate interference cancellation at the receiver. The signal received at the relay is either amplified, or partially decoded with a simple energy detector, before being forwarded to the destination. Under flat Rayleigh fading channels, the receiver at the destination can be implemented non-coherently, i.e., it does not require the instantaneous channel information to demodulate the users’ transmitted signals. The proposed iterative algorithm at the destination exploits the soft outputs of the channel decoders to successively extract the maximum likelihood symbols of the users and perform interference cancellation. The iterative method is successfully applied for both cases of amplify-and-forward and partial decode-and-forward relaying. The error performance of the proposed iterative receiver is investigated by computer simulation. Under the same spectral efficiency, simulation results demonstrate the excellent performance of the proposed receiver when compared to the performance of decoding without interference cancellation as well as the performance of the maximum likelihood multiuser detection previously developed for uncoded transmission. Simulation results also suggest that a proper selection of channel coding schemes can help to support significant more users without consuming extra system resources. In addition, to further enhance the receiver’s performance in terms of the bit error rate, an improved version of the iterative receiver is presented. Such an improved receiver invokes inner-loop iterations between the channel decoders and the demappers in such a way that the soft outputs of the channel decoders are also used to refine the outputs of the demappers for every outer-loop iteration. Simulation results indicate a performance gain of about 2.5dB by using the two-loop receiver when compared to the performance of the first proposed receiver

    Coherent receiver design and analysis for interleaved division multiple access (IDMA)

    Get PDF
    This thesis discusses a new multiuser detection technique for cellular wireless communications. Multiuser communications is critical in cellular systems as multiple terminals (users) transmit to base stations (or wireless infrastructure). Efficient receiver methods are needed to maximise the performance of these links and maximise overall throughput and coverage while minimising inter-cell interference. Recently a new technique, Interleave-Division Multiple Access (IDMA), was developed as a variant of direct-sequence code division multiple access (DS-CDMA). In this new scheme users are separated by user specific interleavers, and each user is allocated a low rate code. As a result, the bandwidth expansion is devoted to the low rate code and not weaker spreading codes. IDMA has shown to have significant performance gains over traditional DS-CDMA with a modest increase in complexity. The literature on IDMA primarily focuses on the design of low rate forward error correcting (FEC) codes, as well as channel estimation. However, the practical aspects of an IDMA receiver such as timing acquisition, tracking, block asynchronous detection, and cellular analysis are rarely studied. The objective of this thesis is to design and analyse practical synchronisation, detection and power optimisation techniques for IDMA systems. It also, for the first time, provides a novel analysis and design of a multi-cell system employing a general multiuser receiver. These tools can be used to optimise and evaluate the performance of an IDMA communication system. The techniques presented in this work can be easily employed for DS-CDMA or other multiuser receiver designs with slight modification. Acquisition and synchronisation are essential processes that a base-station is required to perform before user's data can be detected and decoded. For high capacity IDMA systems, which can be heavily loaded and operate close to the channel capacity, the performance of acquisition and tracking can be severely affected by multiple access interference as well as severe drift. This thesis develops acquisition and synchronisation algorithms which can cope with heavy multiple access interference as well as high levels of drift. Once the timing points have been estimated for an IDMA receiver the detection and decoding process can proceed. An important issue with uplink systems is the alignment of frame boundaries for efficient detection. This thesis demonstrates how a fully asynchronous system can be modelled for detection. This thesis presents a model for the frame asynchronous IDMA system, and then develops a maximum likelihood receiver for the proposed system. This thesis develops tools to analyse and optimise IDMA receivers. The tools developed are general enough to be applied to other multiuser receiver techniques. The conventional EXIT chart analysis of unequal power allocated multiuser systems use an averaged EXIT chart analysis for all users to reduce the complexity of the task. This thesis presents a multidimensional analysis for power allocated IDMA, and shows how it can be utilised in power optimisation. Finally, this work develops a novel power zoning technique for multicell multiuser receivers using the optimised power levels, and illustrates a particular example where there is a 50% capacity improvement using the proposed scheme. -- provided by Candidate

    Blind iterative multiuser detection for error coded CDMA systems.

    Get PDF
    Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, Durban, 2005.Mobile communications have developed since the radio communications that were in use 50 years ago. With the advent of GSM, mobile communications was brought to the average citizen. More recently, COMA technology has provided the user with higher data rates and more reliable service, and it is apparent that it is the future of wireless communication. With the introduction of 3G technology in South Africa, it is becoming clear that it is the solution to the country's wireless communication requirements. The 3G and next-generation technologies could provide reliable communications to areas where it has proven difficult to operate and maintain communications effectively, such as rural locations. It is therefore important that the se technologies continue to be researched in order to enhance their capabilities to provide a solution to the wireless needs of the local and global community. Whilst COMA is proving to be a reliable communications technology, it is still susceptible to the effects of the near-far problem and multiple-access interference. A number of multiuser detectors have been proposed in literature that attempt to mitigate the effects of multiple-access interference. A notable detector is the blind MOE detector, which requires only the desired user 's spreading sequence , and it exhibits performance approximating that of other linear multiuser detectors. Another promising class of multiuser detector operate using an iterative principle and have a joint multiuser detection and error-correcting coding scheme. The aim of this research is to develop a blind iterative detector with FEC coding as a potential solution to the need for a detector that can mitigate the effects of interfering users operating on the channel. The proposed detector has the benefits of both the blind and iterative schemes: it only requires the knowledge of the desired user ' s signature, and it has integrated error-correcting abilities. The simulation results presented in this dissertation show that the proposed detector exhibits superior performance over the blind MOE detector for various channel conditions. An overview of spread-spectrum technologies is presented, and the operation of OS-COMA is described in more detail. A history and overview of existing COMA standards is also given . The need for multiuser detection is explained, and a description and comparison of various detection methods that have appeared in literature is given. An introduction to error coding is given , with convolutional code s, the turbo coding concept and method s of iterative detection are described in more detail and compared, as iterat ive decoding is fundamental to the operation of an iterative COMA detector. An overview of iterative multiuser detection is given , and selected iterative methods are described in more detail. A blind iterative detector is proposed and analysed. Simulation results for the propo sed detector, and a comparison to the blind MOE detector is presented, showing performance characteristics and the effects of various channel parameters on performance. From these results it can be seen that the proposed detector exhibits a superior performance compared to that of the blind MOE detector for various channel conditions. The dissertation is concluded, and possible future directions of research are given

    Quantum search algorithms, quantum wireless, and a low-complexity maximum likelihood iterative quantum multi-user detector design

    No full text
    The high complexity of numerous optimal classic communication schemes, such as the maximum likelihood (ML) multiuser detector (MUD), often prevents their practical implementation. In this paper, we present an extensive review and tutorial on quantum search algorithms (QSA) and their potential applications, and we employ a QSA that finds the minimum of a function in order to perform optimal hard MUD with a quadratic reduction in the computational complexity when compared to that of the ML MUD. Furthermore, we follow a quantum approach to achieve the same performance as the optimal soft-input soft-output classic detectors by replacing them with a quantum algorithm, which estimates the weighted sum of a function’s evaluations. We propose a soft-input soft-output quantum-assisted MUD (QMUD) scheme, which is the quantum-domain equivalent of the ML MUD. We then demonstrate its application using the design example of a direct-sequence code division multiple access system employing bit-interleaved coded modulation relying on iterative decoding, and compare it with the optimal ML MUD in terms of its performance and complexity. Both our extrinsic information transfer charts and bit error ratio curves show that the performance of the proposed QMUD and that of the optimal classic MUD are equivalent, but the QMUD’s computational complexity is significantly lower

    Combined turbo coding and interference rejection for DS-CDMA.

    Get PDF
    Thesis (Ph.D.)-University of KwaZulu-Natal, Durban, 2004.This dissertation presents interference cancellation techniques for both the Forward Error Correction (FEC) coded and the uncoded Direct Sequence Code Division Multiple Access (DS-CDMA) systems. Analytical models are also developed for the adaptive and the non-adaptive Parallel Interference Cancellation (PlC) receivers. Results that are obtained from the computer simulations of the PlC receiver types confirm the accuracy of the analytical models that are developed. Results show that the Least Mean Square (LMS) algorithm based adaptive PlC receivers have bit error rate performances that are better than those of the non-adaptive PlC receivers. In the second part of this dissertation, a novel iterative multiuser detector for the Turbo coded DS-CDMA system is developed. The performance of the proposed receiver in the multirate CDMA system is also investigated. The developed receiver is found to have an error rate performance that is very close to the single user limit after a few numbers of iterations. The receiver is also resilient against the near-far effect. A methodology is also presented on the use of the Gaussian approximation method in the convergence analysis of iterative interference cancellation receivers for turbo coded DS-CDMA systems

    Transmission and detection for space-time block coding and v-blast systems

    Get PDF
    This dissertation focuses on topics of data transmission and detection of space -time block codes (STBC). The STBCs can be divided into two main categories, namely, the orthogonal space-time block codes (OSTBC) and the quasi-orthogonal space-time codes (Q-OSTBC). The space-time block coded systems from transceiver design perspective for both narrow-band and frequency selective wireless environment are studied. The dissertation also processes and studies a fast iterative detection scheme for a high-rate space-time transmission system, the V-BLAST system. In Chapter 2, a new OSTBC scheme with full-rate and full-diversity, which can be used on QPSK transceiver systems with four transmit antennas and any number of receivers is studied. The newly proposed coding scheme is a non-linear coding. Compared with full-diversity QOSTBC, an obvious advantage of our proposed new OSTBC is that the coded signals transmitted through all four transmit antennas do not experience any constellation expansion. In Chapter 3, a new fast coherent detection algorithm is proposed to provide maximum likelihood (ML) detection for Q-OSTBC. The new detection scheme is also very useful to analysis the diversity property of Q-OSTBC and design full diversity Q-OSTBC codes. The complexity of the new proposed detection algorithm can be independent to the modulation order and is especially suitable for high data rate transmission. In Chapter 4, the space-time coding schemes in frequency selective channels are studied. Q-OSTC transmission and detection schemes are firstly extended for frequency selective wireless environment. A new block based quasi-orthogonal space-time block encoding and decoding (Q-OSTBC) scheme for a wireless system with four transmit antennas is proposed in frequency selective fading channels. The proposed MLSE detection scheme effectively combats channel dispersion and frequency selectivity due to multipath, yet still provides full diversity gain. However, since the computational complexity of MLSE detection increases exponentially with the maximum delay of the frequency selective channel, a fast sub-optimal detection scheme using MMSE equalizer is also proposed, especially for channels with large delays. The Chapter 5 focuses on the V-BLAST system, an important high-rate space-time data transmission scheme. A reduced complexity ML detection scheme for VBLAST systems, which uses a pre-decoder guided local exhaustive search is proposed and studied. A polygon searching algorithm and an ordered successive interference cancellation (O-SIC) sphere searching algorithm are major components of the proposed multi-step ML detectors. At reasonable high SNRs, our algorithms have low complexity comparable to that of O-SIC algorithm, while they provide significant performance improvement. Another new low complexity algorithm termed ordered group-wise interference cancellation (O-GIC) is also proposed for the detection of high dimensional V-BLAST systems. The O-GIC based detection scheme is a sub-optimal detection scheme, however, it outperforms the O-SIC

    SYSTEM AND METHOD FOR PERFORMING OPTICAL CODE DIVISION MULTIPLE ACCESS COMMUNICATION USING BPOLAR CODES

    Get PDF
    An optical encoding and decoding system which performs code-division multiple access (CDMA) communication in the incoherent, or direct detection, optical domain using bipolar +1/-1 codes. The present invention uses code modu lation and detection principles that permit all-optical imple mentation of the bipolar. +1/-1. code and correlation detec tion that have been developed for the radio frequency (RF) systems. This is possible in spite of the non-negative, or unipolar, +1/0, nature of the incoherent optical system that only detects and processes the signal intensity. The unipolar optical system of the present invention is equivalent to the bipolar RF system in that the correlation properties of the bipolar codes is completely preserved. The optical CDMA system can be realized both in time or frequency domain encoding with all-optical components

    Iterative decoding scheme for cooperative communications

    Get PDF
    • …
    corecore