2,773 research outputs found

    Designing Robustness to Temperature in a Feedforward Loop Circuit

    Get PDF
    'Incoherent feedforward loops' represent important biomolecular circuit elements capable of a rich set of dynamic behavior including adaptation and pulsed responses. Temperature can modulate some of these properties through its effect on the underlying reaction rate parameters. It is generally unclear how to design a circuit where these properties are robust to variations in temperature. Here, we address this issue using a combination of tools from control and dynamical systems theory as well as preliminary experimental measurements towards such a design. Using a structured uncertainty representation, we analyze a standard incoherent feedforward loop circuit, noting mechanisms that intrinsically confer temperature robustness to some of its properties. Further, we study design variants that can enhance this robustness to temperature, including different negative feedback configurations as well as conditions for perfect temperature compensation. Finally, we find that the response of an incoherent feedforward loop circuit in cells can change with temperature. These results present groundwork for the design of a temperature-robust incoherent feedforward loop circuit

    Assessment of Robustness to Temperature in a Negative Feedback Loop and a Feedforward Loop

    Get PDF
    Robustness to temperature variation is an important specification in biomolecular circuit design. While the cancellation of parametric temperature dependencies has been shown to improve the temperature robustness of the period in a synthetic oscillator design, the performance of other biomolecular circuit designs in different temperature conditions is relatively unclear. Using a combination of experimental measurements and mathematical models, we assessed the temperature robustness of two biomolecular circuit motifsā€”a negative feedback loop and a feedforward loop. We found that the measured responses of both the circuits changed with temperature, both in the amplitude and in the transient response. We also found that, in addition to the cancellation of parametric temperature dependencies, certain parameter regimes could facilitate the temperature robustness of the negative feedback loop, although at a performance cost. We discuss these parameter regimes in the context of the measured data for the negative feedback loop. These results should help develop a framework for assessing and designing temperature robustness in biomolecular circuits

    Assessment of Robustness to Temperature in a Negative Feedback Loop and a Feedforward Loop

    Get PDF
    Robustness to temperature variation is an important specification in biomolecular circuit design. While the cancellation of parametric temperature dependencies has been shown to improve the temperature robustness of the period in a synthetic oscillator design, the performance of other biomolecular circuit designs in different temperature conditions is relatively unclear. Using a combination of experimental measurements and mathematical models, we assessed the temperature robustness of two biomolecular circuit motifsā€”a negative feedback loop and a feedforward loop. We found that the measured responses of both the circuits changed with temperature, both in the amplitude and in the transient response. We also found that, in addition to the cancellation of parametric temperature dependencies, certain parameter regimes could facilitate the temperature robustness of the negative feedback loop, although at a performance cost. We discuss these parameter regimes in the context of the measured data for the negative feedback loop. These results should help develop a framework for assessing and designing temperature robustness in biomolecular circuits

    Quantitative Performance Bounds in Biomolecular Circuits due to Temperature Uncertainty

    Get PDF
    Performance of biomolecular circuits is affected by changes in temperature, due to its influence on underlying reaction rate parameters. While these performance variations have been estimated using Monte Carlo simulations, how to analytically bound them is generally unclear. To address this, we apply control-theoretic representations of uncertainty to examples of different biomolecular circuits, developing a framework to represent uncertainty due to temperature. We estimate bounds on the steady-state performance of these circuits due to temperature uncertainty. Through an analysis of the linearised dynamics, we represent this uncertainty as a feedback uncertainty and bound the variation in the magnitude of the input-output transfer function, providing a estimate of the variation in frequency-domain properties. Finally, we bound the variation in the time trajectories, providing an estimate of variation in time-domain properties. These results should enable a framework for analytical characterisation of uncertainty in biomolecular circuit performance due to temperature variation and may help in estimating relative performance of different controllers

    Quantitative Performance Bounds in Biomolecular Circuits due to Temperature Uncertainty

    Get PDF
    Performance of biomolecular circuits is affected by changes in temperature, due to its influence on underlying reaction rate parameters. While these performance variations have been estimated using Monte Carlo simulations, how to analytically bound them is generally unclear. To address this, we apply control-theoretic representations of uncertainty to examples of different biomolecular circuits, developing a framework to represent uncertainty due to temperature. We estimate bounds on the steady-state performance of these circuits due to temperature uncertainty. Through an analysis of the linearised dynamics, we represent this uncertainty as a feedback uncertainty and bound the variation in the magnitude of the input-output transfer function, providing a estimate of the variation in frequency-domain properties. Finally, we bound the variation in the time trajectories, providing an estimate of variation in time-domain properties. These results should enable a framework for analytical characterisation of uncertainty in biomolecular circuit performance due to temperature variation and may help in estimating relative performance of different controllers

    A Robust 96.6-dB-SNDR 50-kHz-Bandwidth Switched-Capacitor Delta-Sigma Modulator for IR Imagers in Space Instrumentation

    Get PDF
    Infrared imaging technology, used both to study deep-space bodies' radiation and environmental changes on Earth, experienced constant improvements in the last few years, pushing data converter designers to face new challenges in terms of speed, power consumption and robustness against extremely harsh operating conditions. This paper presents a 96.6-dB-SNDR (Signal-to-Noise-plus-Distortion Ratio) 50-kHz-bandwidth fourth-order single-bit switched-capacitor delta-sigma modulator for ADC operating at 1.8 V and consuming 7.9 mW fit for space instrumentation. The circuit features novel Class-AB single-stage switched variable-mirror amplifiers (SVMAs) enabling low-power operation, as well as low sensitivity to both process and temperature deviations for the whole modulator. The physical implementation resulted in a 1.8-mm 2 chip integrated in a standard 0.18-Ī¼m 1-poly-6-metal (1P6M) CMOS technology, and it reaches a 164.6-dB Schreier figure of merit from experimental SNDR measurements without making use of any clock bootstrapping, analog calibration, nor digital compensation technique. When coupled to a IR imager, the current design allows more than 50 frames per minute with a resolution of 16 effective number of bits (ENOB) while consuming less than 300 mW

    To develop an efficient variable speed compressor motor system

    Get PDF
    This research presents a proposed new method of improving the energy efficiency of a Variable Speed Drive (VSD) for induction motors. The principles of VSD are reviewed with emphasis on the efficiency and power losses associated with the operation of the variable speed compressor motor drive, particularly at low speed operation.The efficiency of induction motor when operated at rated speed and load torque is high. However at low load operation, application of the induction motor at rated flux will cause the iron losses to increase excessively, hence its efficiency will reduce dramatically. To improve this efficiency, it is essential to obtain the flux level that minimizes the total motor losses. This technique is known as an efficiency or energy optimization control method. In practice, typical of the compressor load does not require high dynamic response, therefore improvement of the efficiency optimization control that is proposed in this research is based on scalar control model.In this research, development of a new neural network controller for efficiency optimization control is proposed. The controller is designed to generate both voltage and frequency reference signals imultaneously. To achieve a robust controller from variation of motor parameters, a real-time or on-line learning algorithm based on a second order optimization Levenberg-Marquardt is employed. The simulation of the proposed controller for variable speed compressor is presented. The results obtained clearly show that the efficiency at low speed is significant increased. Besides that the speed of the motor can be maintained. Furthermore, the controller is also robust to the motor parameters variation. The simulation results are also verified by experiment

    The control of switching dc-dc converters : a general LQR problem

    Get PDF
    Author name used in this publication: C. K. LiVersion of RecordPublishe

    Time-encoding analog-to-digital converters : bridging the analog gap to advanced digital CMOS? Part 2: architectures and circuits

    Get PDF
    The scaling of CMOS technology deep into the nanometer range has created challenges for the design of highperformance analog ICs: they remain large in area and power consumption in spite of process scaling. Analog circuits based on time encoding [1], [2], where the signal information is encoded in the waveform transitions instead of its amplitude, have been developed to overcome these issues. While part one of this overview article [3] presented the basic principles of time encoding, this follow-up article describes and compares the main time-encoding architectures for analog-to-digital converters (ADCs) and discusses the corresponding design challenges of the circuit blocks. The focus is on structures that avoid, as much as possible, the use of traditional analog blocks like operational amplifiers (opamps) or comparators but instead use digital circuitry, ring oscillators, flip-flops, counters, an so on. Our overview of the state of the art will show that these circuits can achieve excellent performance. The obvious benefit of this highly digital approach to realizing analog functionality is that the resulting circuits are small in area and more compatible with CMOS process scaling. The approach also allows for the easy integration of these analog functions in systems on chip operating at "digital" supply voltages as low as 1V and lower. A large part of the design process can also be embedded in a standard digital synthesis flow

    Vibration control of robotic modules using input shaping algorithm

    Get PDF
    In this thesis, vibration control using input shaping algorithm is studied. Vibration Control of flexible structures is an important problem and has been an active research area. Different approaches have been developed for vibration control which can be divided roughly into feedback and feedforward methods. Feedback methods need measurements and on-line calculation of the controller outputs. Although feedback methods are generally more robust and have a number of well known performance advantages, proper use of feedforward control can also significantly improve the speed of response of the system. Input shaping is one of these feedforward methods. It has been successfully applied to many control problems even in the presence of modeling uncertainties and structural nonlinearities. In many industrial problems, the objective is to position a load in minimum time without exciting the vibratory modes. hi input shaping, the aim is to give zero energy to these modes by performing input prefiltering or equivalently pole-zero cancellation in the command feedforward path. To carry out this prefiltering function, the natural frequency (Ļ‰n) and the damping ratio (Ī¶) of the plant are required for the shaper design [I]. This work is organized as follows; in the hardware part, basic information about a cartesian robotic module, an EXC controller, a VME controller, and a Dalanco Spry digital signal processing board is given. In Chapter 3 the input shaping technique is introduced. In Chapter 4 control system design and implementation of Zero Vibration (ZV). Zero Vibration & Derivative (ZVD), and Extra Insensitive (El) shapers are given. In Chapter 5 results of ZV, ZVD, and El shapers will he given. Comparison and suggestions for improvement are also given in this chapter. concluding remarks are given in Chapter 6
    • ā€¦
    corecore