170 research outputs found

    Utilizing ZigBee Technology for More Resource-efficient Wireless Networking

    Get PDF
    Wireless networks have been an essential part of communication in our daily life. Targeted at different applications, a variety of wireless networks have emerged. Due to constrained resources for wireless communications, challenges arise but are not fully addressed. Featured by low cost and low power, ZigBee technology has been developed for years. As the ZigBee technology becomes more and more mature, low-cost embedded ZigBee interfaces have been available off the shelf and their sizes are becoming smaller and smaller. It will not be surprising to see the ZigBee interface commonly embedded in mobile devices in the near future. Motivated by this trend, we propose to leverage the ZigBee technology to improve existing wireless networks. In this dissertation, we classify wireless networks into three categories (i.e., infrastructure-based, infrastructure-less and hybrid networks), and investigate each with a representative network. Practical schemes are designed with the major objective of improving resource efficiency for wireless networking through utilizing ZigBee technology. Extensive simulation and experiment results have demonstrated that network performance can be improved significantly in terms of energy efficiency, throughput, packet delivery delay, etc., by adopting our proposed schemes

    Fixed chain-based wireless sensor network for intelligent transportation systems

    Get PDF
    Wireless Sensor Networks (WSNs) are distributed and interconnected wirelessly sensors that are used in a variety of fields of our daily life, such as the manufacturing, utility operations and traffic monitoring. Many WSN applications come with some technical weaknesses and issues, especially when they are used in Intelligent Transportation Systems (ITS). For ITS applications that use a fixed chain topology which contains road studs deployed at ground level, there are some challenges related to radio propagation, energy constraints and the Media Access Control (MAC) protocol. This thesis develops a ground level radio propagation model for communication between road studs, and energy efficiency metrics to manage the resources to overcome the energy constraints, as well as a MAC protocol compatible with chain topology and ground level communication. For the challenges of the physical layer, this thesis investigates the use of a WSN for communicating between road-based nodes. These nodes are situated at ground level, and two-way wireless communication is required between the nodes and from the nodes to a roadside control unit. Field measurements have been carried out to examine the propagation close to the ground to determine the maximum distance between road-based nodes as a function of the antenna height. The results show that for a frequency of 2.4 GHz, a range of up to 8m is achievable with 2mW equivalent isotropically radiated power (EIRP). An empirical near-ground level radio propagation model has been derived, and the predicted results from this model are shown to match closely to the measured results. Since wireless sensor networks have power constraints, green energy efficiency metrics have been proposed for low-power wireless sensors operating at ground level. A numerical analysis is carried out to investigate the utilisation of the green energy efficiency metrics for ground level communication in wireless sensor networks. The proposed metrics have been developed to calculate the optimal sensor deployment, antenna height and energy efficiency level for the near ground wireless sensor. As an application of the proposed metrics, the relationship between the energy efficiency and the spacing between the wireless sensor nodes has been studied. The results provide guidance for energy efficient deployment of near ground level wireless sensors. To manage the communication between large numbers of nodes deployed on a chain topology, this research presents a time division multiple access (TDMA) MAC protocol that is specifically designed for applications requiring periodic sensing of the sensor field. Numerical analysis has been conducted to investigate the optimum transmission scheduling based on the signal-to-interference-plus-noise-ratio (SINR) for ground level propagation model applied on wireless chain topology. The optimised transmission schedule considers the SINR value to enable simultaneous transmission from multiple nodes. The most significant advantages of this approach are reduced delay and improved Packet Received Ratio (PRR). Simulation is performed to evaluate the proposed protocol for intelligent transport system applications. The simulation results validate the MAC protocol for a fixed chain topology compared with similar protocols

    From MANET to people-centric networking: Milestones and open research challenges

    Get PDF
    In this paper, we discuss the state of the art of (mobile) multi-hop ad hoc networking with the aim to present the current status of the research activities and identify the consolidated research areas, with limited research opportunities, and the hot and emerging research areas for which further research is required. We start by briefly discussing the MANET paradigm, and why the research on MANET protocols is now a cold research topic. Then we analyze the active research areas. Specifically, after discussing the wireless-network technologies, we analyze four successful ad hoc networking paradigms, mesh networks, opportunistic networks, vehicular networks, and sensor networks that emerged from the MANET world. We also present an emerging research direction in the multi-hop ad hoc networking field: people centric networking, triggered by the increasing penetration of the smartphones in everyday life, which is generating a people-centric revolution in computing and communications

    TDMA-based MAC Protocols for Vehicular Ad Hoc Networks: A Survey, Qualitative Analysis and Open Research Issues

    Get PDF
    International audience—Vehicular Ad-hoc NETworks (VANETs) have attracted a lot of attention in the research community in recent years due to their promising applications. VANETs help improve traffic safety and efficiency. Each vehicle can exchange information to inform other vehicles about the current status of the traffic flow or a dangerous situation such as an accident. Road safety and traffic management applications require a reliable communication scheme with minimal transmission collisions, which thus increase the need for an efficient Medium Access Control (MAC) protocol. However, the design of the MAC in a vehicular network is a challenging task due to the high speed of the nodes, the frequent changes in topology, the lack of an infrastructure, and various QoS requirements. Recently several Time Division Multiple Access (TDMA)-based medium access control protocols have been proposed for VANETs in an attempt to ensure that all the vehicles have enough time to send safety messages without collisions and to reduce the end-to-end delay and the packet loss ratio. In this paper, we identify the reasons for using the collision-free medium access control paradigm in VANETs. We then present a novel topology-based classification and we provide an overview of TDMA-based MAC protocols that have been proposed for VANETs. We focus on the characteristics of these protocols, as well as on their benefits and limitations. Finally, we give a qualitative comparison, and we discuss some open issues that need to be tackled in future studies in order to improve the performance of TDMA-based MAC protocols for vehicle to vehicle (V2V) communications

    An intelligent intrusion detection system for external communications in autonomous vehicles

    Get PDF
    Advancements in computing, electronics and mechanical systems have resulted in the creation of a new class of vehicles called autonomous vehicles. These vehicles function using sensory input with an on-board computation system. Self-driving vehicles use an ad hoc vehicular network called VANET. The network has ad hoc infrastructure with mobile vehicles that communicate through open wireless channels. This thesis studies the design and implementation of a novel intelligent intrusion detection system which secures the external communication of self-driving vehicles. This thesis makes the following four contributions: It proposes a hybrid intrusion detection system to protect the external communication in self-driving vehicles from potential attacks. This has been achieved using fuzzification and artificial intelligence. The second contribution is the incorporation of the Integrated Circuit Metrics (ICMetrics) for improved security and privacy. By using the ICMetrics, specific device features have been used to create a unique identity for vehicles. Our work is based on using the bias in on board sensory systems to create ICMetrics for self-driving vehicles. The incorporation of fuzzy petri net in autonomous vehicles is the third contribution of the thesis. Simulation results show that the scheme can successfully detect denial-of-service attacks. The design of a clustering based hierarchical detection system has also been presented to detect worm hole and Sybil attacks. The final contribution of this research is an integrated intrusion detection system which detects various attacks by using a central database in BusNet. The proposed schemes have been simulated using the data extracted from trace files. Simulation results have been compared and studied for high levels of detection capability and performance. Analysis shows that the proposed schemes provide high detection rate with a low rate of false alarm. The system can detect various attacks in an optimised way owing to a reduction in the number of features, fuzzification

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms
    • …
    corecore