259 research outputs found

    Trends and patterns in ASIC and FPGA use in space missions and impact in technology roadmaps of the European Space Agency

    Get PDF
    ASIC (Application-Specific Integrated Circuit) and FPGA (Field-Programmable Gate Array) are the two most complex and versatile integrated circuit technologies used nowadays in space missions. They are key technologies and perform the core of the avionics control and data processing of every satellite and spacecraft. Quantities used of ASIC and FPGA in space missions have been increasing significantly in the last years. Some of the fundamental differences between ASIC and FPGA are the development costs and the reprogrammability features, while in both cases there is a lengthy and costly customer design process behind. This research attempts to quantify the use of ASIC and FPGA technologies in space missions in the last years, to show the patterns and trends of use and to assess how these conclusions match the priorities established in the present technology roadmaps of the European Space Agency. The results of this study will be used as valuable inputs for future strategic and investment decisions of the European Space Agency and the European space community actors. Keywords: ASIC, FPGA, European Space Agency, space missions, technology roadmaps.Outgoin

    Strategic Roadmaps and Implementation Actions for ICT in Construction

    Get PDF

    The future of trans-Atlantic collaboration in modelling and simulation of Cyber-Physical Systems - A strategic research agenda for collaboration

    Get PDF
    Smart systems, in which sophisticated software/hardware is embedded in physical systems, are part of everyday life. From simple products with embedded decision-making software, to massive systems in which hundreds of systems, each with hundreds or thousands of embedded processors, interoperate the use of Cyber-Physical Systems (CPS) will continue to expand. There has been substantial investment in CPS research in Europe and the United States. Through a series of workshops and other events, the TAMS4CPS project has established that there is mutual benefit in the European Union and US collaborating on CPS research. An agenda for collaborative research into modelling and simulation for CPS is thus set forth in the publication at hand. The agenda includes models for many different purposes, including fundamental concepts, design models (e.g. architectures), predictive techniques, real-time control, human-CPS interaction, and CPS governance. Within this framework, seven important themes have been identified where mutual benefits can be realised by EU-US cooperation. To actively advance research and innovation in these fields, a number of collaboration mechanisms is presented and concrete actions to encourage, enhance and implement trans-Atlantic collaboration in modelling and simulation of CPS are recommended

    Novel mission concepts for polar coverage : An overview of recent developments and possible future applications

    Get PDF
    The paper provides a survey of novel mission concepts for continuous, hemispheric polar observation and direct-link polar telecommunications. It is well known that these services cannot be provided by traditional platforms: geostationary satellites do not cover high-latitude regions, while low- and medium-orbit Sun-synchronous spacecraft only cover a narrow swath of the Earth at each passage. Concepts that are proposed in the literature are described, including the pole-sitter concept (in which a spacecraft is stationary above the pole), spacecraft in artificial equilibrium points in the Sun-Earth system and non-Keplerian polar Molniya orbits. Additionally, novel displaced eight-shaped orbits at Lagrangian points are presented. For many of these concepts, a continuous acceleration is required and propulsion systems include solar electric propulsion, solar sail and a hybridisation of the two. Advantages and drawbacks of each mission concept are assessed, and a comparison in terms of high-latitude coverage and distance, spacecraft mass, payload and lifetime is presented. Finally, the paper will describe a number of potential applications enabled by these concepts, focusing on polar Earth observation and telecommunications

    The pole-sitter mission concept : an overview of recent developments and possible future applications

    Get PDF
    The paper provides a survey of novel mission concepts for continuous, hemispheric polar observation and direct-link polar telecommunications. It is well known that these services cannot be provided by traditional platforms: geostationary satellites do not cover high-latitude regions, while low- and medium-orbit Sun-synchronous spacecraft only cover a narrow swath of the Earth at each passage. Concepts that are proposed in the literature are described, including the pole-sitter concept (in which a spacecraft is stationary above the pole), spacecraft in artificial equilibrium points in the Sun-Earth system and non-Keplerian polar Molniya orbits. Additionally, novel displaced eight-shaped orbits at Lagrangian points are presented. For many of these concepts, a continuous acceleration is required and propulsion systems include solar electric propulsion, solar sail and a hybridisation of the two. Advantages and drawbacks of each mission concept are assessed, and a comparison in terms of high-latitude coverage and distance, spacecraft mass, payload and lifetime is presented. Finally, the paper will describe a number of potential applications enabled by these concepts, focusing on polar Earth observation and telecommunications

    M-health review: joining up healthcare in a wireless world

    Get PDF
    In recent years, there has been a huge increase in the use of information and communication technologies (ICT) to deliver health and social care. This trend is bound to continue as providers (whether public or private) strive to deliver better care to more people under conditions of severe budgetary constraint

    Research and innovation in connected and automated transport in Europe

    Get PDF
    Adequate research and innovation (R&I) is paramount for the seamless testing, adoption and integration of connected and automated transport. This report provides a comprehensive analysis of R&I initiatives in Europe in this field. The assessment follows the methodology developed by the European Commission’s Transport Research and Information Monitoring and Information System (TRIMIS). The report critically addresses research by thematic area and technologies, highlighting recent developments and future needs.JRC.C.4-Sustainable Transpor

    Autonomous Approach and Landing Algorithms for Unmanned Aerial Vehicles

    Get PDF
    In recent years, several research activities have been developed in order to increase the autonomy features in Unmanned Aerial Vehicles (UAVs), to substitute human pilots in dangerous missions or simply in order to execute specific tasks more efficiently and cheaply. In particular, a significant research effort has been devoted to achieve high automation in the landing phase, so as to allow the landing of an aircraft without human intervention, also in presence of severe environmental disturbances. The worldwide research community agrees with the opportunity of the dual use of UAVs (for both military and civil purposes), for this reason it is very important to make the UAVs and their autolanding systems compliant with the actual and future rules and with the procedures regarding autonomous flight in ATM (Air Traffic Management) airspace in addition to the typical military aims of minimizing fuel, space or other important parameters during each autonomous task. Developing autolanding systems with a desired level of reliability, accuracy and safety involves an evolution of all the subsystems related to the guide, navigation and control disciplines. The main drawbacks of the autolanding systems available at the state of art concern or the lack of adaptivity of the trajectory generation and tracking to unpredicted external events, such as varied environmental condition and unexpected threats to avoid, or the missed compliance with the guide lines imposed by certification authorities of the proposed technologies used to get the desired above mentioned adaptivity. During his PhD period the author contributed to the development of an autonomous approach and landing system considering all the indispensable functionalities like: mission automation logic, runway data managing, sensor fusion for optimal estimation of vehicle state, trajectory generation and tracking considering optimality criteria, health management algorithms. In particular the system addressed in this thesis is capable to perform a fully adaptive autonomous landing starting from any point of the three dimensional space. The main novel feature of this algorithm is that it generates on line, with a desired updating rate or at a specified event, the nominal trajectory for the aircraft, based on the actual state of the vehicle and on the desired state at touch down point. Main features of the autolanding system based on the implementation of the proposed algorithm are: on line trajectory re-planning in the landing phase, fully autonomy from remote pilot inputs, weakly instrumented landing runway (without ILS availability), ability to land starting from any point in the space and autonomous management of failures and/or adverse atmospheric conditions, decision-making logic evaluation for key-decisions regarding possible execution of altitude recovery manoeuvre based on the Differential GPS integrity signal and compatible with the functionalities made available by the future GNSS system. All the algorithms developed allow reducing computational tractability of trajectory generation and tracking problems so as to be suitable for real time implementation and to still obtain a feasible (for the vehicle) robust and adaptive trajectory for the UAV. All the activities related to the current study have been conducted at CIRA (Italian Aerospace Research Center) in the framework of the aeronautical TECVOL project whose aim is to develop innovative technologies for the autonomous flight. The autolanding system was developed by the TECVOL team and the author’s contribution to it will be outlined in the thesis. Effectiveness of proposed algorithms has been then evaluated in real flight experiments, using the aeronautical flying demonstrator available at CIRA

    Technical Data Interoperability (TDI) Pathfinder Via Emerging Standards

    Get PDF
    The TDI project (TDI) investigates trending technical data standards for applicability to NASA vehicles, space stations, payloads, facilities, and equipment. TDI tested COTS software compatible with a certain suite of related industry standards for capabilities of individual benefits and interoperability. These standards not only esnable Information Technology (IT) efficiencies, but also address efficient structures and standard content for business processes. We used source data from generic industry samples as well as NASA and European Space Agency (ESA) data from space systems
    • 

    corecore