962 research outputs found

    Some Optimally Adaptive Parallel Graph Algorithms on EREW PRAM Model

    Get PDF
    The study of graph algorithms is an important area of research in computer science, since graphs offer useful tools to model many real-world situations. The commercial availability of parallel computers have led to the development of efficient parallel graph algorithms. Using an exclusive-read and exclusive-write (EREW) parallel random access machine (PRAM) as the computation model with a fixed number of processors, we design and analyze parallel algorithms for seven undirected graph problems, such as, connected components, spanning forest, fundamental cycle set, bridges, bipartiteness, assignment problems, and approximate vertex coloring. For all but the last two problems, the input data structure is an unordered list of edges, and divide-and-conquer is the paradigm for designing algorithms. One of the algorithms to solve the assignment problem makes use of an appropriate variant of dynamic programming strategy. An elegant data structure, called the adjacency list matrix, used in a vertex-coloring algorithm avoids the sequential nature of linked adjacency lists. Each of the proposed algorithms achieves optimal speedup, choosing an optimal granularity (thus exploiting maximum parallelism) which depends on the density or the number of vertices of the given graph. The processor-(time)2 product has been identified as a useful parameter to measure the cost-effectiveness of a parallel algorithm. We derive a lower bound on this measure for each of our algorithms

    An Efficient Multistage Fusion Approach for Smartphone Security Analysis

    Get PDF
    Android smartphone ecosystem is inundated with innumerable applications mainly developed by third party contenders leading to high vulnerability of these devices. In addition, proliferation of smartphone usage along with their potential applications in diverse field entice malware community to develop new malwares to attack these devices. In order to overcome these issues, an android malware detection framework is proposed wherein an efficient multistage fusion approach is introduced. For this, a robust unified feature vector is created by fusion of transformed feature matrices corresponding to multi-cue using non-linear graph based cross-diffusion. Unified feature is further subjected to multiple classifiers to obtain their classification scores. Classifier scores are further optimally fused employing Dezert-Smarandache Theory (DSmT). Strength of suggested model is assessed both qualitatively and quantitatively by ten-fold cross-validation on the benchmarked datasets. On an average of outcome, we achieved detection accuracy of 98.97% and F-measure of 0.9936.&nbsp

    Planning under risk and uncertainty

    Get PDF
    This thesis concentrates on the optimization of large-scale management policies under conditions of risk and uncertainty. In paper I, we address the problem of solving large-scale spatial and temporal natural resource management problems. To model these types of problems, the framework of graph-based Markov decision processes (GMDPs) can be used. Two algorithms for computation of high-quality management policies are presented: the first is based on approximate linear programming (ALP) and the second is based on mean-field approximation and approximate policy iteration (MF-API). The applicability and efficiency of the algorithms were demonstrated by their ability to compute near-optimal management policies for two large-scale management problems. It was concluded that the two algorithms compute policies of similar quality. However, the MF-API algorithm should be used when both the policy and the expected value of the computed policy are required, while the ALP algorithm may be preferred when only the policy is required. In paper II, a number of reinforcement learning algorithms are presented that can be used to compute management policies for GMDPs when the transition function can only be simulated because its explicit formulation is unknown. Studies of the efficiency of the algorithms for three management problems led us to conclude that some of these algorithms were able to compute near-optimal management policies. In paper III, we used the GMDP framework to optimize long-term forestry management policies under stochastic wind-damage events. The model was demonstrated by a case study of an estate consisting of 1,200 ha of forest land, divided into 623 stands. We concluded that managing the estate according to the risk of wind damage increased the expected net present value (NPV) of the whole estate only slightly, less than 2%, under different wind-risk assumptions. Most of the stands were managed in the same manner as when the risk of wind damage was not considered. However, the analysis rests on properties of the model that need to be refined before definite conclusions can be drawn

    Applications of network optimization

    Get PDF
    Includes bibliographical references (p. 41-48).Ravindra K. Ahuja ... [et al.]

    New Constructions for Competitive and Minimal-Adaptive Group Testing

    Get PDF
    Group testing (GT) was originally proposed during the World War II in an attempt to minimize the \emph{cost} and \emph{waiting time} in performing identical blood tests of the soldiers for a low-prevalence disease. Formally, the GT problem asks to find dnd\ll n \emph{defective} elements out of nn elements by querying subsets (pools) for the presence of defectives. By the information-theoretic lower bound, essentially dlog2nd\log_2 n queries are needed in the worst-case. An \emph{adaptive} strategy proceeds sequentially by performing one query at a time, and it can achieve the lower bound. In various applications, nothing is known about dd beforehand and a strategy for this scenario is called \emph{competitive}. Such strategies are usually adaptive and achieve query optimality within a constant factor called the \emph{competitive ratio}. In many applications, queries are time-consuming. Therefore, \emph{minimal-adaptive} strategies which run in a small number ss of stages of parallel queries are favorable. This work is mainly devoted to the design of minimal-adaptive strategies combined with other demands of both theoretical and practical interest. First we target unknown dd and show that actually competitive GT is possible in as few as 22 stages only. The main ingredient is our randomized estimate of a previously unknown dd using nonadaptive queries. In addition, we have developed a systematic approach to obtain optimal competitive ratios for our strategies. When dd is a known upper bound, we propose randomized GT strategies which asymptotically achieve query optimality in just 22, 33 or 44 stages depending upon the growth of dd versus nn. Inspired by application settings, such as at American Red Cross, where in most cases GT is applied to small instances, \textit{e.g.}, n=16n=16. We extended our study of query-optimal GT strategies to solve a given problem instance with fixed values nn, dd and ss. We also considered the situation when elements to test cannot be divided physically (electronic devices), thus the pools must be disjoint. For GT with \emph{disjoint} simultaneous pools, we show that Θ(sd(n/d)1/s)\Theta (sd(n/d)^{1/s}) tests are sufficient, and also necessary for certain ranges of the parameters

    Automated de novo metabolite identification with mass spectrometry and cheminformatics

    Get PDF
    In this thesis new algorithms and methods that enable the de novo identification of metabolites have been developed. The aim was to find methods to propose candidate structures for unknown metabolites using MSn data as starting point. These methods have been integrated into a semi-automated pipeline to identify new human metabolites. The discovery of new metabolites will improve our capability to understand disease via its metabolic fingerprint, to develop personalized treatments and to discover new drugs. In addition, the cheminformatics methods presented in this thesis increase our understanding on the properties of human metabolites. The research described in this thesis has shown that the success of de novo metabolite identification relies on the synergy between analytical chemistry methods (i.e. LC-MSn) and cheminformatics tools.Netherlands Organization for Applied Scientific Research (TNO) Netherlands Metabolomics CentreUBL - phd migration 201

    Deep learning architectures for 2D and 3D scene perception

    Get PDF
    Scene understanding is a fundamental problem in computer vision tasks, that is being more intensively explored in recent years with the development of deep learning. In this dissertation, we proposed deep learning structures to address challenges in 2D and 3D scene perception. We developed several novel architectures for 3D point cloud understanding at city-scale point by effectively capturing both long-range and short-range information to handle the challenging problem of large variations in object size for city-scale point cloud segmentation. GLSNet++ is a two-branch network for multiscale point cloud segmentation that models this complex problem using both global and local processing streams to capture different levels of contextual and structural 3D point cloud information. We developed PointGrad, a new graph convolution gradient operator for capturing structural relationships, that encoded point-based directional gradients into a high-dimensional multiscale tensor space. Using the Point- Grad operator with graph convolution on scattered irregular point sets captures the salient structural information in the point cloud across spatial and feature scale space, enabling efficient learning. We integrated PointGrad with several deep network architectures for large-scale 3D point cloud semantic segmentation, including indoor scene and object part segmentation. In many real application areas including remote sensing and aerial imaging, the class imbalance is common and sufficient data for rare classes is hard to acquire or has high-cost associated with expert labeling. We developed MDXNet for few-shot and zero-shot learning, which emulates the human visual system by leveraging multi-domain knowledge from general visual primitives with transfer learning for more specialized learning tasks in various application domains. We extended deep learning methods in various domains, including the material domain for predicting carbon nanotube forest attributes and mechanical properties, biomedical domain for cell segmentation.Includes bibliographical references
    corecore