12,531 research outputs found

    Designing Natural Language Output for the IoT

    Get PDF
    A large number of devices categorised as "Internet of Things" (IoT) that are in the consumer market are designed to autonomously monitor things of interest to users. These devices often make use of natural language output, more specifically textual messages, as a way to notify users. These messages are commonly simple predetermined strings. Some IoT devices however are designed to report on complex applications, which may be difficult for users without technical domain knowledge to understand. In this work, we present an initial evaluation in which we investigated how users' inclination to attend to a monitoring system is affected by different levels of information. Based our findings, we discuss future avenues of research which we believe will further our understanding of natural language output's application in the IoT domain

    Deep Learning-Based Dynamic Watermarking for Secure Signal Authentication in the Internet of Things

    Full text link
    Securing the Internet of Things (IoT) is a necessary milestone toward expediting the deployment of its applications and services. In particular, the functionality of the IoT devices is extremely dependent on the reliability of their message transmission. Cyber attacks such as data injection, eavesdropping, and man-in-the-middle threats can lead to security challenges. Securing IoT devices against such attacks requires accounting for their stringent computational power and need for low-latency operations. In this paper, a novel deep learning method is proposed for dynamic watermarking of IoT signals to detect cyber attacks. The proposed learning framework, based on a long short-term memory (LSTM) structure, enables the IoT devices to extract a set of stochastic features from their generated signal and dynamically watermark these features into the signal. This method enables the IoT's cloud center, which collects signals from the IoT devices, to effectively authenticate the reliability of the signals. Furthermore, the proposed method prevents complicated attack scenarios such as eavesdropping in which the cyber attacker collects the data from the IoT devices and aims to break the watermarking algorithm. Simulation results show that, with an attack detection delay of under 1 second the messages can be transmitted from IoT devices with an almost 100% reliability.Comment: 6 pages, 9 figure

    Patent Analytics Based on Feature Vector Space Model: A Case of IoT

    Full text link
    The number of approved patents worldwide increases rapidly each year, which requires new patent analytics to efficiently mine the valuable information attached to these patents. Vector space model (VSM) represents documents as high-dimensional vectors, where each dimension corresponds to a unique term. While originally proposed for information retrieval systems, VSM has also seen wide applications in patent analytics, and used as a fundamental tool to map patent documents to structured data. However, VSM method suffers from several limitations when applied to patent analysis tasks, such as loss of sentence-level semantics and curse-of-dimensionality problems. In order to address the above limitations, we propose a patent analytics based on feature vector space model (FVSM), where the FVSM is constructed by mapping patent documents to feature vectors extracted by convolutional neural networks (CNN). The applications of FVSM for three typical patent analysis tasks, i.e., patents similarity comparison, patent clustering, and patent map generation are discussed. A case study using patents related to Internet of Things (IoT) technology is illustrated to demonstrate the performance and effectiveness of FVSM. The proposed FVSM can be adopted by other patent analysis studies to replace VSM, based on which various big data learning tasks can be performed

    Secure Cloud-Edge Deployments, with Trust

    Get PDF
    Assessing the security level of IoT applications to be deployed to heterogeneous Cloud-Edge infrastructures operated by different providers is a non-trivial task. In this article, we present a methodology that permits to express security requirements for IoT applications, as well as infrastructure security capabilities, in a simple and declarative manner, and to automatically obtain an explainable assessment of the security level of the possible application deployments. The methodology also considers the impact of trust relations among different stakeholders using or managing Cloud-Edge infrastructures. A lifelike example is used to showcase the prototyped implementation of the methodology
    • …
    corecore