35,300 research outputs found

    Designing multi-sensory displays for abstract data

    Get PDF
    The rapid increase in available information has lead to many attempts to automatically locate patterns in large, abstract, multi-attributed information spaces. These techniques are often called data mining and have met with varying degrees of success. An alternative approach to automatic pattern detection is to keep the user in the exploration loop by developing displays for perceptual data mining. This approach allows a domain expert to search the data for useful relationships and can be effective when automated rules are hard to define. However, designing models of the abstract data and defining appropriate displays are critical tasks in building a useful system. Designing displays of abstract data is especially difficult when multi-sensory interaction is considered. New technology, such as Virtual Environments, enables such multi-sensory interaction. For example, interfaces can be designed that immerse the user in a 3D space and provide visual, auditory and haptic (tactile) feedback. It has been a goal of Virtual Environments to use multi-sensory interaction in an attempt to increase the human-to-computer bandwidth. This approach may assist the user to understand large information spaces and find patterns in them. However, while the motivation is simple enough, actually designing appropriate mappings between the abstract information and the human sensory channels is quite difficult. Designing intuitive multi-sensory displays of abstract data is complex and needs to carefully consider human perceptual capabilities, yet we interact with the real world everyday in a multi-sensory way. Metaphors can describe mappings between the natural world and an abstract information space. This thesis develops a division of the multi-sensory design space called the MS-Taxonomy. The MS-Taxonomy provides a concept map of the design space based on temporal, spatial and direct metaphors. The detailed concepts within the taxonomy allow for discussion of low level design issues. Furthermore the concepts abstract to higher levels, allowing general design issues to be compared and discussed across the different senses. The MS-Taxonomy provides a categorisation of multi-sensory design options. However, to design effective multi-sensory displays requires more than a thorough understanding of design options. It is also useful to have guidelines to follow, and a process to describe the design steps. This thesis uses the structure of the MS-Taxonomy to develop the MS-Guidelines and the MS-Process. The MS-Guidelines capture design recommendations and the problems associated with different design choices. The MS-Process integrates the MS-Guidelines into a methodology for developing and evaluating multi-sensory displays. A detailed case study is used to validate the MS-Taxonomy, the MS-Guidelines and the MS-Process. The case study explores the design of multi-sensory displays within a domain where users wish to explore abstract data for patterns. This area is called Technical Analysis and involves the interpretation of patterns in stock market data. Following the MS-Process and using the MS-Guidelines some new multi-sensory displays are designed for pattern detection in stock market data. The outcome from the case study includes some novel haptic-visual and auditory-visual designs that are prototyped and evaluated

    Resonating Experiences of Self and Others enabled by a Tangible Somaesthetic Design

    Get PDF
    Digitalization is penetrating every aspect of everyday life including a human's heart beating, which can easily be sensed by wearable sensors and displayed for others to see, feel, and potentially "bodily resonate" with. Previous work in studying human interactions and interaction designs with physiological data, such as a heart's pulse rate, have argued that feeding it back to the users may, for example support users' mindfulness and self-awareness during various everyday activities and ultimately support their wellbeing. Inspired by Somaesthetics as a discipline, which focuses on an appreciation of the living body's role in all our experiences, we designed and explored mobile tangible heart beat displays, which enable rich forms of bodily experiencing oneself and others in social proximity. In this paper, we first report on the design process of tangible heart displays and then present results of a field study with 30 pairs of participants. Participants were asked to use the tangible heart displays during watching movies together and report their experience in three different heart display conditions (i.e., displaying their own heart beat, their partner's heart beat, and watching a movie without a heart display). We found, for example that participants reported significant effects in experiencing sensory immersion when they felt their own heart beats compared to the condition without any heart beat display, and that feeling their partner's heart beats resulted in significant effects on social experience. We refer to resonance theory to discuss the results, highlighting the potential of how ubiquitous technology could utilize physiological data to provide resonance in a modern society facing social acceleration.Comment: 18 page

    Tangible user interfaces : past, present and future directions

    Get PDF
    In the last two decades, Tangible User Interfaces (TUIs) have emerged as a new interface type that interlinks the digital and physical worlds. Drawing upon users' knowledge and skills of interaction with the real non-digital world, TUIs show a potential to enhance the way in which people interact with and leverage digital information. However, TUI research is still in its infancy and extensive research is required in or- der to fully understand the implications of tangible user interfaces, to develop technologies that further bridge the digital and the physical, and to guide TUI design with empirical knowledge. This paper examines the existing body of work on Tangible User In- terfaces. We start by sketching the history of tangible user interfaces, examining the intellectual origins of this field. We then present TUIs in a broader context, survey application domains, and review frame- works and taxonomies. We also discuss conceptual foundations of TUIs including perspectives from cognitive sciences, phycology, and philoso- phy. Methods and technologies for designing, building, and evaluating TUIs are also addressed. Finally, we discuss the strengths and limita- tions of TUIs and chart directions for future research

    Tactons: structured tactile messages for non-visual information display

    Get PDF
    Tactile displays are now becoming available in a form that can be easily used in a user interface. This paper describes a new form of tactile output. Tactons, or tactile icons, are structured, abstract messages that can be used to communicate messages non-visually. A range of different parameters can be used for Tacton construction including: frequency, amplitude and duration of a tactile pulse, plus other parameters such as rhythm and location. Tactons have the potential to improve interaction in a range of different areas, particularly where the visual display is overloaded, limited in size or not available, such as interfaces for blind people or in mobile and wearable devices. This paper describes Tactons, the parameters used to construct them and some possible ways to design them. Examples of where Tactons might prove useful in user interfaces are given

    When to Make the Sensory Social: Registering in Face-to-Face Openings

    Get PDF
    This article analyzes naturally occurring video-recorded openings during which participants make the sensory social through the action of registering—calling joint attention to a selected, publicly perceiv- able referent so others shift their sensory attention to it. It examines sequence-initial actions that register referents for which a participant is regarded as responsible. Findings demonstrate a systematic preference organization which observably guides when and how people initiate registering sequences sensitive to ownership of, and displayed stance toward, the target referent. Analysis shows how registering an owned referent achieves intersubjectivity and puts involved participants’ face, affiliation, and social relationship on the line. A video abstract is available at https://youtu.be/rNL70vawG3
    corecore