8,670 research outputs found

    Mixed-methods research: a new approach to evaluating the motivation and satisfaction of university students using advanced visual technologies

    Get PDF
    The final publication is available at link.springer.comA mixed-methods study evaluating the motivation and satisfaction of Architecture degree students using interactive visualization methods is presented in this paper. New technology implementations in the teaching field have been largely extended to all types of levels and educational frameworks. However, these innovations require approval validation and evaluation by the final users, the students. In this paper, the advantages and disadvantages of applying mixed evaluation technology are discussed in a case study of the use of interactive and collaborative tools for the visualization of 3D architectonical models. The main objective was to evaluate Architecture and Building Science students’ the motivation to use and satisfaction with this type of technology and to obtain adequate feedback that allows for the optimization of this type of experiment in future iterations.Postprint (author’s final draft

    Augmented Reality for People with Visual Impairments: Designing and Creating Audio-Tactile Content from Existing Objects

    Get PDF
    ISBN: 978-3-319-94273-5International audienceTactile maps and diagrams are widely used as accessible graphical media for people with visual impairments, in particular in the context of education. They can be made interactive by augmenting them with audio feedback. It is however complicated to create audio-tactile graphics that have rich and realistic tactile textures. To overcome these limitations, we propose a new augmented reality approach allowing novices to easily and quickly augment real objects with audio feedback. In our user study, six teachers created their own audio-augmentation of objects, such as a botanical atlas, within 30 minutes or less. Teachers found the tool easy to use and were confident about re-using it. The resulting augmented objects allow two modes: exploration mode provides feedback on demand about an element, while quiz mode provides questions and answers. We evaluated the resulting audio-tactile material with five visually impaired children. Participants found the resulting interactive graphics exciting to use independently of their mental imagery skills

    "Hey Model!" -- Natural User Interactions and Agency in Accessible Interactive 3D Models

    Full text link
    While developments in 3D printing have opened up opportunities for improved access to graphical information for people who are blind or have low vision (BLV), they can provide only limited detailed and contextual information. Interactive 3D printed models (I3Ms) that provide audio labels and/or a conversational agent interface potentially overcome this limitation. We conducted a Wizard-of-Oz exploratory study to uncover the multi-modal interaction techniques that BLV people would like to use when exploring I3Ms, and investigated their attitudes towards different levels of model agency. These findings informed the creation of an I3M prototype of the solar system. A second user study with this model revealed a hierarchy of interaction, with BLV users preferring tactile exploration, followed by touch gestures to trigger audio labels, and then natural language to fill in knowledge gaps and confirm understanding.Comment: Paper presented at ACM CHI 2020: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, ACM, New York, April 2020; Replacement: typos correcte

    An aesthetics of touch: investigating the language of design relating to form

    Get PDF
    How well can designers communicate qualities of touch? This paper presents evidence that they have some capability to do so, much of which appears to have been learned, but at present make limited use of such language. Interviews with graduate designer-makers suggest that they are aware of and value the importance of touch and materiality in their work, but lack a vocabulary to fully relate to their detailed explanations of other aspects such as their intent or selection of materials. We believe that more attention should be paid to the verbal dialogue that happens in the design process, particularly as other researchers show that even making-based learning also has a strong verbal element to it. However, verbal language alone does not appear to be adequate for a comprehensive language of touch. Graduate designers-makers’ descriptive practices combined non-verbal manipulation within verbal accounts. We thus argue that haptic vocabularies do not simply describe material qualities, but rather are situated competences that physically demonstrate the presence of haptic qualities. Such competencies are more important than groups of verbal vocabularies in isolation. Design support for developing and extending haptic competences must take this wide range of considerations into account to comprehensively improve designers’ capabilities

    MapSense: multi-sensory interactive maps for children living with visual impairments

    Get PDF
    We report on the design process leading to the creation of MapSense, a multi-sensory interactive map for visually impaired children. We conducted a formative study in a specialized institute to understand children’s educational needs, their context of care and their preferences regarding interactive technologies. The findings (1) outline the needs for tools and methods to help children to acquire spatial skills and (2) provide four design guidelines for educational assistive technologies. Based on these findings and an iterative process, we designed and deployed MapSense in the institute during two days. It enables collaborations between children with a broad range of impairments, proposes reflective and ludic scenarios and allows caretakers to customize it as they wish. A field experiment reveals that both children and caretakers considered the system successful and empowering

    MapSense: Design and Field Study of Interactive Maps for Children Living with Visual Impairments

    Get PDF
    We report on the design process leading to the creation of MapSense, a multi-sensory interactive map for visually impaired children. We conducted a formative study in a specialized institute to understand children’s educational needs, their context of care and their preferences regarding interactive technologies. The findings (1) outline the needs for tools and methods to help children to acquire spatial skills and (2) provide four design guidelines for educational assistive technologies. Based on these findings and an iterative process, we designed and deployed MapSense in the institute during two days. It enables collaborations between children with a broad range of impairments, proposes reflective and ludic scenarios and allows caretakers to customize it as they wish. A field experiment reveals that both children and caretakers considered the system successful and empowering

    Systemaattinen kirjallisuuskatsaus 3D-tulostuksesta kemian opetuksessa : aikaisemman tutkimuksen pedagogisen kÀytön analysointi TPACK-mallin avulla

    Get PDF
    The focus of this systematic literature analysis is to provide a comprehensive review of earlier research on the utilisation of 3D printers in chemistry education. The objective is to offer research-based knowledge for developing chemistry education through following research questions: what kind of work has been done in the field of 3D printing in chemistry education; what kind of design strategies have been implemented; how 3D printing has been used in chemistry education research. The data consists of 47 peer-reviewed articles which were analysed via qualitative content analysis using a technological pedagogical content knowledge framework. Theoretical framework was selected because integrating 3D printing in chemistry education requires knowledge of chemistry, technology, and most importantly, pedagogy. Our research indicates that integrating 3D printing begins by analysing current challenges which are reasoned via pedagogical or technological content knowledge-based arguments. 3D printing was used for producing solutions (e.g. physical models) that support working with found challenges. In chemistry education research, 3D printing has mainly been used for printing research instruments; few studies have investigated its effect on learning or students’ perceptions towards it. There is a great need for comprehensive student-centred pedagogical models for the use of 3D printing in chemistry education.Peer reviewe

    Modular 3-D-printed education tool for blind and visually impaired students oriented to net structures

    Get PDF
    Contribution: This article presents the design, creation, testing, and results after the use of a 3-D-printed educational tool that helped a blind student learning electric circuits theory in higher education. Background: Educational tools oriented to visually impaired and blind students in higher education are limited or even nonexistent in the STEM area. Previous developments on the field present in the literature, including other 3-D printing solutions, have been revised and compared to the proposed educational tool. Intended Outcomes: The tool was tested by a blind student in order to test the potential of the design to achieve a better understanding of the topology and performance of electric circuits. The main purpose of the tool described in this work is helping to increase the resources available in the field of teaching students with visual impairments. Application Design: 3-D technology has the potential to be used to create accessibility tools for visually impaired and blind individuals. Modular systems can be used to create complex structures using simple elements. A modular 3-D-printed tool was fabricated to help blind and visually impaired students to learn net structures. Findings: The 3-D tool has allowed the blind student to work autonomously in the study of simple electric circuits and supplies the teacher with a resource to communicate with the student in an easy and fast way. Updated design can be used to describe more complex net structures that can be applied to most electric circuits despite their complexity. The use of the modular system provided the blind student with a direct representation of the whole subject, even when it involved a great amount of graphical information and manipulation.This work was supported by the "Programa de AtenciĂłn a Estudiantes con Discapacidad" from Universidad Carlos III de Madrid

    Teaching Visually Impaired College Students in Introductory Statistics

    Get PDF
    Instructors of postsecondary classes in statistics rely heavily on visuals in their teaching, both within the classroom and in resources like textbooks, handouts, and software, but this information is often inaccessible to students who are blind or visually impaired (BVI). The unique challenges involved in adapting both pedagogy and course materials to accommodate a BVI student may provoke anxiety among instructors teaching a BVI student for the first time, and instructors may end up feeling unprepared or “reinventing the wheel.” We discuss a wide variety of accommodations inside and outside of the classroom grounded in the empirical literature on cognition and learning and informed by our own experience teaching a blind student in an introductory statistics course
    • 

    corecore