18,214 research outputs found

    A load-sharing architecture for high performance optimistic simulations on multi-core machines

    Get PDF
    In Parallel Discrete Event Simulation (PDES), the simulation model is partitioned into a set of distinct Logical Processes (LPs) which are allowed to concurrently execute simulation events. In this work we present an innovative approach to load-sharing on multi-core/multiprocessor machines, targeted at the optimistic PDES paradigm, where LPs are speculatively allowed to process simulation events with no preventive verification of causal consistency, and actual consistency violations (if any) are recovered via rollback techniques. In our approach, each simulation kernel instance, in charge of hosting and executing a specific set of LPs, runs a set of worker threads, which can be dynamically activated/deactivated on the basis of a distributed algorithm. The latter relies in turn on an analytical model that provides indications on how to reassign processor/core usage across the kernels in order to handle the simulation workload as efficiently as possible. We also present a real implementation of our load-sharing architecture within the ROme OpTimistic Simulator (ROOT-Sim), namely an open-source C-based simulation platform implemented according to the PDES paradigm and the optimistic synchronization approach. Experimental results for an assessment of the validity of our proposal are presented as well

    EEG-based cognitive control behaviour assessment: an ecological study with professional air traffic controllers

    Get PDF
    Several models defining different types of cognitive human behaviour are available. For this work, we have selected the Skill, Rule and Knowledge (SRK) model proposed by Rasmussen in 1983. This model is currently broadly used in safety critical domains, such as the aviation. Nowadays, there are no tools able to assess at which level of cognitive control the operator is dealing with the considered task, that is if he/she is performing the task as an automated routine (skill level), as procedures-based activity (rule level), or as a problem-solving process (knowledge level). Several studies tried to model the SRK behaviours from a Human Factor perspective. Despite such studies, there are no evidences in which such behaviours have been evaluated from a neurophysiological point of view, for example, by considering brain activity variations across the different SRK levels. Therefore, the proposed study aimed to investigate the use of neurophysiological signals to assess the cognitive control behaviours accordingly to the SRK taxonomy. The results of the study, performed on 37 professional Air Traffic Controllers, demonstrated that specific brain features could characterize and discriminate the different SRK levels, therefore enabling an objective assessment of the degree of cognitive control behaviours in realistic setting

    Engineering data compendium. Human perception and performance. User's guide

    Get PDF
    The concept underlying the Engineering Data Compendium was the product of a research and development program (Integrated Perceptual Information for Designers project) aimed at facilitating the application of basic research findings in human performance to the design and military crew systems. The principal objective was to develop a workable strategy for: (1) identifying and distilling information of potential value to system design from the existing research literature, and (2) presenting this technical information in a way that would aid its accessibility, interpretability, and applicability by systems designers. The present four volumes of the Engineering Data Compendium represent the first implementation of this strategy. This is the first volume, the User's Guide, containing a description of the program and instructions for its use

    Matlab2Trace: A Matlab to Trace translator to visualise and analyse concurrent system activities and execution traces

    Get PDF
    Matlab provides an environment to analyse and visualise data and develop algorithms. However, there is limited support for visualising and analysing system activities executing concurrently, for instance, on a multiprocessor platform. Trace (https://esi.nl/research/output/tools/trace) is software that specialises in visualising and analysing concurrent system activities and execution traces. We present a Matlab to Trace translator that directly generates a trace-input file from the Matlab environment. Concurrent system activities and execution traces of the algorithms developed inside the Matlab environment can be visualised and analysed in Trace using the generated trace-input file. The translator takes as input the logical or absolute starting and ending time of the algorithmic execution, and the number (and labels) of processing cores. TRACE visualizes concurrent activities in a Gantt-chart-like view which provides colouring, grouping and filtering options. TRACE also provides several analysis methods, which sets it apart from the many other Gantt-chart visualization tools: i) Critical-path analysis can be used to detect tasks and resources that are bottlenecks for performance; ii) Distance analysis can be used to compare execution traces with respect to structure, e.g. to check a model trace against an implementation trace; iii) MTL checking provides a means to formally specify and verify properties of execution traces using Metric Temporal Logic. It is useful to express and check, for instance, performance properties such as the “processing latency is at most 50 ms”; iv) The streaming performance DSL is a domain-specific language that captures often-used performance properties for stream-processing systems (e.g., image or video processing), and which eases the use of the MTL checker; and v) The resource usage feature can quickly give insight in the details of the resource usage. The Matlab2Trace can be downloaded from https://github.com/TUE-EE-ES/Matlab2Trace

    A voyage to Mars: A challenge to collaboration between man and machines

    Get PDF
    A speech addressing the design of man machine systems for exploration of space beyond Earth orbit from the human factors perspective is presented. Concerns relative to the design of automated and intelligent systems for the NASA Space Exploration Initiative (SEI) missions are largely based on experiences with integrating humans and comparable systems in aviation. The history, present status, and future prospect, of human factors in machine design are discussed in relation to a manned voyage to Mars. Three different cases for design philosophy are presented. The use of simulation is discussed. Recommendations for required research are given

    uFLIP: Understanding Flash IO Patterns

    Get PDF
    Does the advent of flash devices constitute a radical change for secondary storage? How should database systems adapt to this new form of secondary storage? Before we can answer these questions, we need to fully understand the performance characteristics of flash devices. More specifically, we want to establish what kind of IOs should be favored (or avoided) when designing algorithms and architectures for flash-based systems. In this paper, we focus on flash IO patterns, that capture relevant distribution of IOs in time and space, and our goal is to quantify their performance. We define uFLIP, a benchmark for measuring the response time of flash IO patterns. We also present a benchmarking methodology which takes into account the particular characteristics of flash devices. Finally, we present the results obtained by measuring eleven flash devices, and derive a set of design hints that should drive the development of flash-based systems on current devices.Comment: CIDR 200
    corecore