28,227 research outputs found

    Highly focused document retrieval in aerospace engineering : user interaction design and evaluation

    Get PDF
    Purpose – This paper seeks to describe the preliminary studies (on both users and data), the design and evaluation of the K-Search system for searching legacy documents in aerospace engineering. Real-world reports of jet engine maintenance challenge the current indexing practice, while real users’ tasks require retrieving the information in the proper context. K-Search is currently in use in Rolls-Royce plc and has evolved to include other tools for knowledge capture and management. Design/methodology/approach – Semantic Web techniques have been used to automatically extract information from the reports while maintaining the original context, allowing a more focused retrieval than with more traditional techniques. The paper combines semantic search with classical information retrieval to increase search effectiveness. An innovative user interface has been designed to take advantage of this hybrid search technique. The interface is designed to allow a flexible and personal approach to searching legacy data. Findings – The user evaluation showed that the system is effective and well received by users. It also shows that different people look at the same data in different ways and make different use of the same system depending on their individual needs, influenced by their job profile and personal attitude. Research limitations/implications – This study focuses on a specific case of an enterprise working in aerospace engineering. Although the findings are likely to be shared with other engineering domains (e.g. mechanical, electronic), the study does not expand the evaluation to different settings. Originality/value – The study shows how real context of use can provide new and unexpected challenges to researchers and how effective solutions can then be adopted and used in organizations.</p

    Analysis and implementation of the Large Scale Video-on-Demand System

    Full text link
    Next Generation Network (NGN) provides multimedia services over broadband based networks, which supports high definition TV (HDTV), and DVD quality video-on-demand content. The video services are thus seen as merging mainly three areas such as computing, communication, and broadcasting. It has numerous advantages and more exploration for the large-scale deployment of video-on-demand system is still needed. This is due to its economic and design constraints. It's need significant initial investments for full service provision. This paper presents different estimation for the different topologies and it require efficient planning for a VOD system network. The methodology investigates the network bandwidth requirements of a VOD system based on centralized servers, and distributed local proxies. Network traffic models are developed to evaluate the VOD system's operational bandwidth requirements for these two network architectures. This paper present an efficient estimation of the of the bandwidth requirement for the different architectures.Comment: 9 pages, 8 figure

    Applying science of learning in education: Infusing psychological science into the curriculum

    Get PDF
    The field of specialization known as the science of learning is not, in fact, one field. Science of learning is a term that serves as an umbrella for many lines of research, theory, and application. A term with an even wider reach is Learning Sciences (Sawyer, 2006). The present book represents a sliver, albeit a substantial one, of the scholarship on the science of learning and its application in educational settings (Science of Instruction, Mayer 2011). Although much, but not all, of what is presented in this book is focused on learning in college and university settings, teachers of all academic levels may find the recommendations made by chapter authors of service. The overarching theme of this book is on the interplay between the science of learning, the science of instruction, and the science of assessment (Mayer, 2011). The science of learning is a systematic and empirical approach to understanding how people learn. More formally, Mayer (2011) defined the science of learning as the “scientific study of how people learn” (p. 3). The science of instruction (Mayer 2011), informed in part by the science of learning, is also on display throughout the book. Mayer defined the science of instruction as the “scientific study of how to help people learn” (p. 3). Finally, the assessment of student learning (e.g., learning, remembering, transferring knowledge) during and after instruction helps us determine the effectiveness of our instructional methods. Mayer defined the science of assessment as the “scientific study of how to determine what people know” (p.3). Most of the research and applications presented in this book are completed within a science of learning framework. Researchers first conducted research to understand how people learn in certain controlled contexts (i.e., in the laboratory) and then they, or others, began to consider how these understandings could be applied in educational settings. Work on the cognitive load theory of learning, which is discussed in depth in several chapters of this book (e.g., Chew; Lee and Kalyuga; Mayer; Renkl), provides an excellent example that documents how science of learning has led to valuable work on the science of instruction. Most of the work described in this book is based on theory and research in cognitive psychology. We might have selected other topics (and, thus, other authors) that have their research base in behavior analysis, computational modeling and computer science, neuroscience, etc. We made the selections we did because the work of our authors ties together nicely and seemed to us to have direct applicability in academic settings

    Cooperative Caching for Multimedia Streaming in Overlay Networks

    Get PDF
    Traditional data caching, such as web caching, only focuses on how to boost the hit rate of requested objects in caches, and therefore, how to reduce the initial delay for object retrieval. However, for multimedia objects, not only reducing the delay of object retrieval, but also provisioning reasonably stable network bandwidth to clients, while the fetching of the cached objects goes on, is important as well. In this paper, we propose our cooperative caching scheme for a multimedia delivery scenario, supporting a large number of peers over peer-to-peer overlay networks. In order to facilitate multimedia streaming and downloading service from servers, our caching scheme (1) determines the appropriate availability of cached stream segments in a cache community, (2) determines the appropriate peer for cache replacement, and (3) performs bandwidth-aware and availability-aware cache replacement. By doing so, it achieves (1) small delay of stream retrieval, (2) stable bandwidth provisioning during retrieval session, and (3) load balancing of clients' requests among peers

    Music Information Retrieval in Live Coding: A Theoretical Framework

    Get PDF
    The work presented in this article has been partly conducted while the first author was at Georgia Tech from 2015–2017 with the support of the School of Music, the Center for Music Technology and Women in Music Tech at Georgia Tech. Another part of this research has been conducted while the first author was at Queen Mary University of London from 2017–2019 with the support of the AudioCommons project, funded by the European Commission through the Horizon 2020 programme, research and innovation grant 688382. The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Music information retrieval (MIR) has a great potential in musical live coding because it can help the musician–programmer to make musical decisions based on audio content analysis and explore new sonorities by means of MIR techniques. The use of real-time MIR techniques can be computationally demanding and thus they have been rarely used in live coding; when they have been used, it has been with a focus on low-level feature extraction. This article surveys and discusses the potential of MIR applied to live coding at a higher musical level. We propose a conceptual framework of three categories: (1) audio repurposing, (2) audio rewiring, and (3) audio remixing. We explored the three categories in live performance through an application programming interface library written in SuperCollider, MIRLC. We found that it is still a technical challenge to use high-level features in real time, yet using rhythmic and tonal properties (midlevel features) in combination with text-based information (e.g., tags) helps to achieve a closer perceptual level centered on pitch and rhythm when using MIR in live coding. We discuss challenges and future directions of utilizing MIR approaches in the computer music field

    Pinwheel Scheduling for Fault-tolerant Broadcast Disks in Real-time Database Systems

    Full text link
    The design of programs for broadcast disks which incorporate real-time and fault-tolerance requirements is considered. A generalized model for real-time fault-tolerant broadcast disks is defined. It is shown that designing programs for broadcast disks specified in this model is closely related to the scheduling of pinwheel task systems. Some new results in pinwheel scheduling theory are derived, which facilitate the efficient generation of real-time fault-tolerant broadcast disk programs.National Science Foundation (CCR-9308344, CCR-9596282

    Analysis domain model for shared virtual environments

    Get PDF
    The field of shared virtual environments, which also encompasses online games and social 3D environments, has a system landscape consisting of multiple solutions that share great functional overlap. However, there is little system interoperability between the different solutions. A shared virtual environment has an associated problem domain that is highly complex raising difficult challenges to the development process, starting with the architectural design of the underlying system. This paper has two main contributions. The first contribution is a broad domain analysis of shared virtual environments, which enables developers to have a better understanding of the whole rather than the part(s). The second contribution is a reference domain model for discussing and describing solutions - the Analysis Domain Model
    • …
    corecore