18,341 research outputs found

    Education in the Wild: Contextual and Location-Based Mobile Learning in Action. A Report from the STELLAR Alpine Rendez-Vous Workshop Series

    Get PDF

    Introduction to location-based mobile learning

    Get PDF
    [About the book] The report follows on from a 2-day workshop funded by the STELLAR Network of Excellence as part of their 2009 Alpine Rendez-Vous workshop series and is edited by Elizabeth Brown with a foreword from Mike Sharples. Contributors have provided examples of innovative and exciting research projects and practical applications for mobile learning in a location-sensitive setting, including the sharing of good practice and the key findings that have resulted from this work. There is also a debate about whether location-based and contextual learning results in shallower learning strategies and a section detailing the future challenges for location-based learning

    Augmenting the field experience: a student-led comparison of techniques and technologies

    Get PDF
    In this study we report on our experiences of creating and running a student fieldtrip exercise which allowed students to compare a range of approaches to the design of technologies for augmenting landscape scenes. The main study site is around Keswick in the English Lake District, Cumbria, UK, an attractive upland environment popular with tourists and walkers. The aim of the exercise for the students was to assess the effectiveness of various forms of geographic information in augmenting real landscape scenes, as mediated through a range of techniques and technologies. These techniques were: computer-generated acetate overlays showing annotated wireframe views from certain key points; a custom-designed application running on a PDA; a mediascape running on the mScape software on a GPS-enabled mobile phone; Google Earth on a tablet PC; and a head-mounted in-field Virtual Reality system. Each group of students had all five techniques available to them, and were tasked with comparing them in the context of creating a visitor guide to the area centred on the field centre. Here we summarise their findings and reflect upon some of the broader research questions emerging from the project

    Webbing and orchestration. Two interrelated views on digital tools in mathematics education

    Get PDF
    The integration of digital tools in mathematics education is considered both promising and problematic. To deal with this issue, notions of webbing and instrumental orchestration are developed. However, the two seemed to be disconnected, and having different cultural and theoretical roots. In this article, we investigate the distinct and joint journeys of these two theoretical perspectives. Taking some key moments in recent history as points of de- parture, we conclude that the two perspectives share an importance attributed to digital tools, and that initial differences, such as different views on the role of digital tools and the role of the teacher, have become more nuances. The two approaches share future chal- lenges to the organization of teachers'collaborative work and their use of digital resources.Comment: Teaching Mathematics and its Applications (2014) to be complete

    System upgrade: realising the vision for UK education

    Get PDF
    A report summarising the findings of the TEL programme in the wider context of technology-enhanced learning and offering recommendations for future strategy in the area was launched on 13th June at the House of Lords to a group of policymakers, technologists and practitioners chaired by Lord Knight. The report – a major outcome of the programme – is written by TEL director Professor Richard Noss and a team of experts in various fields of technology-enhanced learning. The report features the programme’s 12 recommendations for using technology-enhanced learning to upgrade UK education

    Collaborative trails in e-learning environments

    Get PDF
    This deliverable focuses on collaboration within groups of learners, and hence collaborative trails. We begin by reviewing the theoretical background to collaborative learning and looking at the kinds of support that computers can give to groups of learners working collaboratively, and then look more deeply at some of the issues in designing environments to support collaborative learning trails and at tools and techniques, including collaborative filtering, that can be used for analysing collaborative trails. We then review the state-of-the-art in supporting collaborative learning in three different areas – experimental academic systems, systems using mobile technology (which are also generally academic), and commercially available systems. The final part of the deliverable presents three scenarios that show where technology that supports groups working collaboratively and producing collaborative trails may be heading in the near future

    Exploring the Internet of "Educational Things"(IoET) in rural underprivileged areas

    Get PDF

    Decoding learning: the proof, promise and potential of digital education

    Get PDF
    With hundreds of millions of pounds spent on digital technology for education every year – from interactive whiteboards to the rise of one–to–one tablet computers – every new technology seems to offer unlimited promise to learning. many sectors have benefitted immensely from harnessing innovative uses of technology. cloud computing, mobile communications and internet applications have changed the way manufacturing, finance, business services, the media and retailers operate. But key questions remain in education: has the range of technologies helped improve learners’ experiences and the standards they achieve? or is this investment just languishing as kit in the cupboard? and what more can decision makers, schools, teachers, parents and the technology industry do to ensure the full potential of innovative technology is exploited? There is no doubt that digital technologies have had a profound impact upon the management of learning. institutions can now recruit, register, monitor, and report on students with a new economy, efficiency, and (sometimes) creativity. yet, evidence of digital technologies producing real transformation in learning and teaching remains elusive. The education sector has invested heavily in digital technology; but this investment has not yet resulted in the radical improvements to learning experiences and educational attainment. in 2011, the Review of Education Capital found that maintained schools spent £487 million on icT equipment and services in 2009-2010. 1 since then, the education system has entered a state of flux with changes to the curriculum, shifts in funding, and increasing school autonomy. While ring-fenced funding for icT equipment and services has since ceased, a survey of 1,317 schools in July 2012 by the british educational suppliers association found they were assigning an increasing amount of their budget to technology. With greater freedom and enthusiasm towards technology in education, schools and teachers have become more discerning and are beginning to demand more evidence to justify their spending and strategies. This is both a challenge and an opportunity as it puts schools in greater charge of their spending and use of technolog

    Location-based and contextual mobile learning. A STELLAR Small-Scale Study

    Get PDF
    This study starts from several inputs that the partners have collected from previous and current running research projects and a workshop organised at the STELLAR Alpine Rendevous 2010. In the study, several steps have been taken, firstly a literature review and analysis of existing systems; secondly, mobile learning experts have been involved in a concept mapping study to identify the main challenges that can be solved via mobile learning; and thirdly, an identification of educational patterns based on these examples has been done. Out of this study the partners aim to develop an educational framework for contextual learning as a unifying approach in the field. Therefore one of our central research questions is: how can we investigate, theorise, model and support contextual learning
    corecore