10,561 research outputs found

    Parallel Architectures for Planetary Exploration Requirements (PAPER)

    Get PDF
    The Parallel Architectures for Planetary Exploration Requirements (PAPER) project is essentially research oriented towards technology insertion issues for NASA's unmanned planetary probes. It was initiated to complement and augment the long-term efforts for space exploration with particular reference to NASA/LaRC's (NASA Langley Research Center) research needs for planetary exploration missions of the mid and late 1990s. The requirements for space missions as given in the somewhat dated Advanced Information Processing Systems (AIPS) requirements document are contrasted with the new requirements from JPL/Caltech involving sensor data capture and scene analysis. It is shown that more stringent requirements have arisen as a result of technological advancements. Two possible architectures, the AIPS Proof of Concept (POC) configuration and the MAX Fault-tolerant dataflow multiprocessor, were evaluated. The main observation was that the AIPS design is biased towards fault tolerance and may not be an ideal architecture for planetary and deep space probes due to high cost and complexity. The MAX concepts appears to be a promising candidate, except that more detailed information is required. The feasibility for adding neural computation capability to this architecture needs to be studied. Key impact issues for architectural design of computing systems meant for planetary missions were also identified

    A formal semantics for control and data flow in the gannet service-based system-on-chip architecture

    Get PDF
    There is a growing demand for solutions which allow the design of large and complex reconfigurable Systems-on- Chip (SoC) at high abstraction levels. The Gannet project proposes a functional programming approach for high-abstraction design of very large SoCs. Gannet is a distributed service-based SoC architecture, i.e. a network of services offered by hardware or software cores. The Gannet SoC is task-level reconfigurable: it performs tasks by executing functional task description programs using a demand-driven dataflow mechanism. The Gannet architecture combines the flexible connectivity offered by a Networkon- Chip with the functional language paradigm to create a fully concurrent distributed SoC with the option to completely separate data flows from control flows. This feature is essential to avoid a bottleneck at he controller for run-time control of multiple high-throughput data flows. In this paper we present the Gannet architecture and language and introduce an operational semantics to formally describe the mechanism to separate control and data flows
    corecore