374 research outputs found

    Dynamic Scaling of VoD Services into Hybrid Clouds with Cost Minimization and QoS Guarantee

    Get PDF
    A large-scale video-on-demand (VoD) service demands huge server costs, to provision thousands of videos to millions of users with high streaming quality. As compared to the traditional practice of relying on large on-premise server clusters, the emerging platforms of geo-distributed public clouds promise a more economic solution: their on-demand resource provisioning can constitute ideal supplements of resources from on-premise servers, and effectively support dynamic scaling of the VoD service at different times. Promising though it is, significant technical challenges persist before it turns into reality: how shall the service provider dynamically replicate videos and dispatch user requests over the hybrid platform, such that the service quality and the minimization of overall cost can be guaranteed over the long run of the system? In this paper, we present a dynamic algorithm that optimally makes decisions on video replication and user request dispatching in a hybrid cloud of on-premise servers and geo-distributed cloud data centers, based on the Lyapunov optimization framework. We rigorously prove that this algorithm can nicely bound the streaming delays within the preset QoS target in cases of arbitrary request arrival patterns, and guarantee that the overall cost is within a small constant gap from the optimum achieved by a T-slot lookahead mechanism with known information into the future. We evaluate our algorithm with extensive simulations under realistic settings, and demonstrate that cost minimization and smooth playback can be achieved in cases of volatile user demands.published_or_final_versio

    Decentralized Adaptive Helper Selection in Multi-channel P2P Streaming Systems

    Full text link
    In Peer-to-Peer (P2P) multichannel live streaming, helper peers with surplus bandwidth resources act as micro-servers to compensate the server deficiencies in balancing the resources between different channel overlays. With deployment of helper level between server and peers, optimizing the user/helper topology becomes a challenging task since applying well-known reciprocity-based choking algorithms is impossible due to the one-directional nature of video streaming from helpers to users. Because of selfish behavior of peers and lack of central authority among them, selection of helpers requires coordination. In this paper, we design a distributed online helper selection mechanism which is adaptable to supply and demand pattern of various video channels. Our solution for strategic peers' exploitation from the shared resources of helpers is to guarantee the convergence to correlated equilibria (CE) among the helper selection strategies. Online convergence to the set of CE is achieved through the regret-tracking algorithm which tracks the equilibrium in the presence of stochastic dynamics of helpers' bandwidth. The resulting CE can help us select proper cooperation policies. Simulation results demonstrate that our algorithm achieves good convergence, load distribution on helpers and sustainable streaming rates for peers

    Big Data-backed video distribution in the telecom cloud

    Get PDF
    Telecom operators are starting the deployment of Content Delivery Networks (CDN) to better control and manage video contents injected into the network. Cache nodes placed close to end users can manage contents and adapt them to users' devices, while reducing video traffic in the core. By adopting the standardized MPEG-DASH technique, video contents can be delivered over HTTP. Thus, HTTP servers can be used to serve contents, while packagers running as software can prepare live contents. This paves the way for virtualizing the CDN function. In this paper, a CDN manager is proposed to adapt the virtualized CDN function to current and future demand. A Big Data architecture, fulfilling the ETSI NFV guide lines, allows controlling virtualized components while collecting and pre-processing data. Optimization problems minimize CDN costs while ensuring the highest quality. Re-optimization is triggered based on threshold violations; data stream mining sketches transform collected into modeled data and statistical linear regression and machine learning techniques are proposed to produce estimation of future scenarios. Exhaustive simulation over a realistic scenario reveals remarkable costs reduction by dynamically reconfiguring the CDN.Peer ReviewedPostprint (author's final draft

    Scaling social media applications into geo-distributed clouds

    Get PDF
    TS51: Cloud/Grid computing and networks 3Federation of geo-distributed cloud services is a trend in cloud computing which, by spanning multiple data centers at different geographical locations, can provide a cloud platform with much larger capacities. Such a geo-distributed cloud is ideal for supporting large-scale social media streaming applications (e.g., YouTube-like sites) with dynamic contents and demands, owing to its abundant on-demand storage/bandwidth capacities and geographical proximity to different groups of users. Although promising, its realization presents challenges on how to efficiently store and migrate contents among different cloud sites (i.e. data centers), and to distribute user requests to the appropriate sites for timely responses at modest costs. These challenges escalate when we consider the persistently increasing contents and volatile user behaviors in a social media application. By exploiting social influences among users, this paper proposes efficient proactive algorithms for dynamic, optimal scaling of a social media application in a geo-distributed cloud. Our key contribution is an online content migration and request distribution algorithm with the following features: (1) future demand prediction by novelly characterizing social influences among the users in a simple but effective epidemic model; (2) oneshot optimal content migration and request distribution based on efficient optimization algorithms to address the predicted demand, and (3) a Δ(t)-step look-ahead mechanism to adjust the one-shot optimization results towards the offline optimum. We verify the effectiveness of our algorithm using solid theoretical analysis, as well as large-scale experiments under dynamic realistic settings on a home-built cloud platform. © 2012 IEEE.published_or_final_versionThe 31st Annual IEEE International Conference on Computer Communications (IEEE INFOCOM 2012), Orlando, FL., 25-30 March 2012. In IEEE Infocom Proceedings, 2012, p. 684-69

    Scaling Social Media Applications into Geo-Distributed Clouds

    Get PDF
    published_or_final_versio
    • …
    corecore