6,166 research outputs found

    Patterning nonisometric origami in nematic elastomer sheets

    Get PDF
    Nematic elastomers dramatically change their shape in response to diverse stimuli including light and heat. In this paper, we provide a systematic framework for the design of complex three dimensional shapes through the actuation of heterogeneously patterned nematic elastomer sheets. These sheets are composed of \textit{nonisometric origami} building blocks which, when appropriately linked together, can actuate into a diverse array of three dimensional faceted shapes. We demonstrate both theoretically and experimentally that: 1) the nonisometric origami building blocks actuate in the predicted manner, 2) the integration of multiple building blocks leads to complex multi-stable, yet predictable, shapes, 3) we can bias the actuation experimentally to obtain a desired complex shape amongst the multi-stable shapes. We then show that this experimentally realized functionality enables a rich possible design landscape for actuation using nematic elastomers. We highlight this landscape through theoretical examples, which utilize large arrays of these building blocks to realize a desired three dimensional origami shape. In combination, these results amount to an engineering design principle, which we hope will provide a template for the application of nematic elastomers to emerging technologies

    Kirigami inspired shape programmable and reconfigurable multifunctional nanocomposites for 3D structures

    Get PDF
    The ability to shape and program remotely and contactlessly from two-dimensional (2D) flat multilayer materials into three-dimensional (3D) structures and functional devices could be ideal for applications like space missions, environmental remediation and minimally invasive surgery. However, achieving a fast and accurate deployment of complex 3D shapes contaclessly at low energy consumption, while embedding a number of physical properties and functionalities, remains very challenging. Herein, a strategy to widen the complexity space of 3D shapes and functions achievable is demonstrated, by enabling a controlled sequential folding while incorporating nano-reinforcements. Sequential folding was successfully achieved and a honeycomb structure was developed by designing multilayer polymer films with different kirigami patterns - each responding at a different rate upon heating. A finite element method (FEM) model was developed to better understand the main underlying physical mechanism as well as to feedback into materials and structure design. Moreover, a shape-programmed CNT veil-based honeycomb structure was developed, triggered remotely by thermal stimuli, with capability to self-sense the folding state through the electrical resistance change (ΔR/R0 = 100–300 %). Overall, it was demonstrated that designing layered nanocomposites with different 2D patterns allows an accurate sequential folding into 3D structures, with bespoke physical properties and integrated sensing–actuating functionalities

    Programming temporal morphing of self-actuated shells

    Get PDF
    Advances in shape-morphing materials, such as hydrogels, shape-memory polymers and light-responsive polymers have enabled prescribing self-directed deformations of initially flat geometries. However, most proposed solutions evolve towards a target geometry without considering time-dependent actuation paths. To achieve more complex geometries and avoid self-collisions, it is critical to encode a spatial and temporal shape evolution within the initially flat shell. Recent realizations of time-dependent morphing are limited to the actuation of few, discrete hinges and cannot form doubly curved surfaces. Here, we demonstrate a method for encoding temporal shape evolution in architected shells that assume complex shapes and doubly curved geometries. The shells are non-periodic tessellations of pre-stressed contractile unit cells that soften in water at rates prescribed locally by mesostructure geometry. The ensuing midplane contraction is coupled to the formation of encoded curvatures. We propose an inverse design tool based on a data-driven model for unit cells’ temporal responses

    Programming temporal morphing of self-actuated shells

    Get PDF
    Advances in shape-morphing materials, such as hydrogels, shape-memory polymers and light-responsive polymers have enabled prescribing self-directed deformations of initially flat geometries. However, most proposed solutions evolve towards a target geometry without considering time-dependent actuation paths. To achieve more complex geometries and avoid self-collisions, it is critical to encode a spatial and temporal shape evolution within the initially flat shell. Recent realizations of time-dependent morphing are limited to the actuation of few, discrete hinges and cannot form doubly curved surfaces. Here, we demonstrate a method for encoding temporal shape evolution in architected shells that assume complex shapes and doubly curved geometries. The shells are non-periodic tessellations of pre-stressed contractile unit cells that soften in water at rates prescribed locally by mesostructure geometry. The ensuing midplane contraction is coupled to the formation of encoded curvatures. We propose an inverse design tool based on a data-driven model for unit cells’ temporal responses
    • …
    corecore