1,047 research outputs found

    Roadmap on optical security

    Get PDF
    Postprint (author's final draft

    Return-Map Cryptanalysis Revisited

    Get PDF
    As a powerful cryptanalysis tool, the method of return-map attacks can be used to extract secret messages masked by chaos in secure communication schemes. Recently, a simple defensive mechanism was presented to enhance the security of chaotic parameter modulation schemes against return-map attacks. Two techniques are combined in the proposed defensive mechanism: multistep parameter modulation and alternative driving of two different transmitter variables. This paper re-studies the security of this proposed defensive mechanism against return-map attacks, and points out that the security was much over-estimated in the original publication for both ciphertext-only attack and known/chosen-plaintext attacks. It is found that a deterministic relationship exists between the shape of the return map and the modulated parameter, and that such a relationship can be used to dramatically enhance return-map attacks thereby making them quite easy to break the defensive mechanism.Comment: 11 pages, 7 figure

    Using LDGM Codes and Sparse Syndromes to Achieve Digital Signatures

    Full text link
    In this paper, we address the problem of achieving efficient code-based digital signatures with small public keys. The solution we propose exploits sparse syndromes and randomly designed low-density generator matrix codes. Based on our evaluations, the proposed scheme is able to outperform existing solutions, permitting to achieve considerable security levels with very small public keys.Comment: 16 pages. The final publication is available at springerlink.co

    Error Function Attack of chaos synchronization based encryption schemes

    Full text link
    Different chaos synchronization based encryption schemes are reviewed and compared from the practical point of view. As an efficient cryptanalysis tool for chaos encryption, a proposal based on the Error Function Attack is presented systematically and used to evaluate system security. We define a quantitative measure (Quality Factor) of the effective applicability of a chaos encryption scheme, which takes into account the security, the encryption speed, and the robustness against channel noise. A comparison is made of several encryption schemes and it is found that a scheme based on one-way coupled chaotic map lattices performs outstandingly well, as judged from Quality Factor
    corecore