16 research outputs found

    Computational design of planar multistable compliant structures

    Get PDF
    This paper presents a method for designing planar multistable compliant structures. Given a sequence of desired stable states and the corresponding poses of the structure, we identify the topology and geometric realization of a mechanism—consisting of bars and joints—that is able to physically reproduce the desired multistable behavior. In order to solve this problem efficiently, we build on insights from minimally rigid graph theory to identify simple but effective topologies for the mechanism. We then optimize its geometric parameters, such as joint positions and bar lengths, to obtain correct transitions between the given poses. Simultaneously, we ensure adequate stability of each pose based on an effective approximate error metric related to the elastic energy Hessian of the bars in the mechanism. As demonstrated by our results, we obtain functional multistable mechanisms of manageable complexity that can be fabricated using 3D printing. Further, we evaluated the effectiveness of our method on a large number of examples in the simulation and fabricated several physical prototypes

    ACM Transactions on Graphics

    Get PDF
    We present an interactive design system to create functional mechanical objects. Our computational approach allows novice users to retarget an existing mechanical template to a user-specified input shape. Our proposed representation for a mechanical template encodes a parameterized mechanism, mechanical constraints that ensure a physically valid configuration, spatial relationships of mechanical parts to the user-provided shape, and functional constraints that specify an intended functionality. We provide an intuitive interface and optimization-in-the-loop approach for finding a valid configuration of the mechanism and the shape to ensure that higher-level functional goals are met. Our algorithm interactively optimizes the mechanism while the user manipulates the placement of mechanical components and the shape. Our system allows users to efficiently explore various design choices and to synthesize customized mechanical objects that can be fabricated with rapid prototyping technologies. We demonstrate the efficacy of our approach by retargeting various mechanical templates to different shapes and fabricating the resulting functional mechanical objects

    3D Fabrication of 2D Mechanisms

    Get PDF
    International audienceThe success of physics sandbox applications and physics-based puzzle games is a strong indication that casualusers and hobbyists enjoy designing mechanisms, for educational or entertainment purposes. In these applications,a variety of mechanisms are designed by assembling two-dimensional shapes, creating gears, cranks, cams, andracks. The experience is made enjoyable by the fact that the user does not need to worry about the intricategeometric details that would be necessary to produce a real mechanism.In this paper, we propose to start from such casual designs of mechanisms and turn them into a 3D model that canbe printed onto widely available, inexpensive filament based 3D printers. Our intent is to empower the users ofsuch tools with the ability to physically realize their mechanisms and see them operate in the real world.To achieve this goal we tackle several challenges. The input 2D mechanism allows for some parts to overlap duringsimulation. These overlapping parts have to be resolved into non–intersecting 3D parts in the real mechanism.We introduce a novel scheme based on the idea of including moving parts into one another whenever possible.This reduces bending stresses on axles compared to previous methods. Our approach supports sliding parts andarbitrarily shaped mechanical parts in the 2D input. The exact 3D shape of the parts is inferred from the 2D inputand the simulation of the mechanism, using boolean operations between shapes. The input mechanism is oftensimply attached to the background. We automatically synthesize a chassis by formulating a topology optimizationproblem, taking into account the stresses exerted by the mechanism on the chassis through time

    Build-to-Last: Strength to Weight 3D Printed Objects

    Get PDF
    The emergence of low-cost 3D printers steers the investigation of new geometric problems that control the quality of the fabricated object. In this paper, we present a method to reduce the material cost and weight of a given object while providing a durable printed model that is resistant to impact and external forces. We introduce a hollowing optimization algorithm based on the concept of honeycomb-cells structure. Honeycombs structures are known to be of minimal material cost while providing strength in tension. We utilize the Voronoi diagram to compute irregular honeycomb-like volume tessellations which define the inner structure. We formulate our problem as a strength–to–weight optimization and cast it as mutually finding an optimal interior tessellation and its maximal hollowing subject to relieve the interior stress. Thus, our system allows to build-to-last 3D printed objects with large control over their strength-to-weight ratio and easily model various interior structures. We demonstrate our method on a collection of 3D objects from different categories. Furthermore, we evaluate our method by printing our hollowed models and measure their stress and weights

    Crafting chaos: computational design of contraptions with complex behaviour

    Get PDF
    The 2010s saw the democratisation of digital fabrication technologies. Although this phenomenon made fabrication more accessible, physical assemblies displaying a complex behaviour are still difficult to design. While many methods support the creation of complex shapes and assemblies, managing a complex behaviour is often assumed to be a tedious aspect of the design process. As a result, the complex parts of the behaviour are either deemed negligible (when possible) or managed directly by the software, without offering much fine-grained user control. This thesis argues that efficient methods can support designers seeking complex behaviours by increasing their level of control over these behaviours. To demonstrate this, I study two types of artistic devices that are particularly challenging to design: drawing machines, and chain reaction contraptions. These artefacts’ complex behaviour can change dramatically even as their components are moved by a small amount. The first case study aims to facilitate the exploration and progressive refinement of complex patterns generated by drawing machines under drawing-level user-defined constraints. The approach was evaluated with a user study, and several machines drawing the expected pattern were fabricated. In the second case study, I propose an algorithm to optimise the layout of complex chain reaction contraptions described by a causal graph of events in order to make them robust to uncertainty. Several machines optimised with this method were successfully assembled and run. This thesis makes the following contributions: (1) support complex behaviour specifications; (2) enable users to easily explore design variations that respect these specifications; and (3) optimise the layout of a physical assembly to maximise the probability of real-life success

    Computational fabrication guided by function and material usage

    Get PDF
    This thesis introduces novel computational design paradigms for digital fabrication guided by function and material usage. With these approaches, the users can design prototypes of mechanical objects by specifying high-level functions of the objects, instead of manipulating low-level geometric details. These methods also provide the users with design suggestions which minimise material wastage during the design process. The benefit of these approaches is that the users can focus on the exploration of the design space without worrying about the realisability of the design or efficient material usage. The shallow exploration of the design space due to the lack of guidance of the users in terms of function and material usage has been one of the most critical obstacles to achieving good designs using existing design tools. We verify this hypothesis by designing and fabricating a variety of objects using our computational tools. The main contributions of the thesis are (i) clearly defined sets of constraints regarding function and material usage in the design and fabrication process, (ii) novel optimisation methods for generating designs subject to the constraints and (iii) computational tools which guide the users to design objects that satisfy the constraints

    Fabrication-Aware Design with Performative Criteria

    Get PDF
    Artists and architects often need to handle multiple constraints during design of physical constructions. We define a performative constraint as any constraint on design that is tied to the performance of the model--either during fabrication, construction, daily use, or destruction. Even for small to medium scale models, there are functional criteria such as the ease of fabrication and the assembly process, or even the interplay of light with the material. Computational tools can greatly aid in this process, assisting with the lower-level performative constraints, while the designer handles the high-level artistic decisions. Additionally, using new fabrication methods, our tools can aid in lowering the difficulty of building complex constructions, making them accessible to hobbyists. In this thesis, we present three computational methods for designing with different approaches, each with a different material, fabrication method, and use case. The first method is a construction with intersecting planar pieces that can be laser cut or milled. These 3D forms are assembled by sliding pieces into each other along straight slits, and do not require other support such as glue or screws. We present a mathematical abstraction that formalizes the constraints between pieces as a graph, including fabrication and assembly constraints, and ensure global rigidity of the sculpture. We also propose an optimization algorithm to guide the user using automatic constraint satisfaction based on analysis of the constraint relation graph. We demonstrate our approach by creating several small- to medium-scale examples including functional furniture. The second method presents a solution to building a 3D sculpture out of existing building blocks that can be found in many homes. Starting from the voxelization of a 3D mesh we merge voxels to form larger bricks, and then analyze and repair structural problems based on a graph representation of the block connections. We then output layer-by-layer building instructions to allow a user to quickly and easily build the model. We also present extensions such as hollowing the models to use less bricks, limiting the number of bricks of each size, and including color constraints. We present both real and virtual brick constructions and associated timings, showing improvements over previous work. The final case presented tackles the inverse design problem of finding a surface to produce a target caustic on a receiver plane when light is refracted or reflected. This is an example where the performative constraint is the principal driver of the design. We introduce an optimal transport formulation to find a correspondence between the incoming light and the output target light distribution. We then show a 3D optimization that finds the surface that transports light based on the correspondence map. Our approach supports piecewise smooth surfaces that are as smooth as possible but allow for creases, to greatly reduce the amount of artifacts while allowing light to be completely diverted producing completely black regions. We show how this leads to a very large space of high-contrast, high-resolution caustic images, including point and line singularities of infinite light density as well as photo-realistic images. Our approach leads to surfaces that can be milled using standard CNC milling. We demonstrate the approach showing both simulated and fabricated examples

    Robotic Knitting

    Get PDF
    As a reaction to typically dead-end debates on future human and robot collaboration that tend to be either dismissive or overly welcoming towards »cobot« technologies, this book provides a technofeminist intervention. Pat Treusch not only shows how both the fields of technofeminism and robotics can engage in a practical exchange through knitting, but also contributes a tangible example of coboting dynamics. Robotic Knitting re-negotiates the boundaries between formalisation and embodiment, craft and high-tech as well as useful and dysfunctional machines. It re-crafts the nature of collaboration between human and robot. This finally entails an alternative mode of relating - a mode that enables an account of careful coboting
    corecore