5,506 research outputs found

    A Formulation of the Potential for Communication Condition using C2KA

    Full text link
    An integral part of safeguarding systems of communicating agents from covert channel communication is having the ability to identify when a covert channel may exist in a given system and which agents are more prone to covert channels than others. In this paper, we propose a formulation of one of the necessary conditions for the existence of covert channels: the potential for communication condition. Then, we discuss when the potential for communication is preserved after the modification of system agents in a potential communication path. Our approach is based on the mathematical framework of Communicating Concurrent Kleene Algebra (C2KA). While existing approaches only consider the potential for communication via shared environments, the approach proposed in this paper also considers the potential for communication via external stimuli.Comment: In Proceedings GandALF 2014, arXiv:1408.556

    Communication in a Poisson Field of Interferers -- Part II: Channel Capacity and Interference Spectrum

    Full text link
    In Part I of this paper, we presented a mathematical model for communication subject to both network interference and noise, where the interferers are scattered according to a spatial Poisson process, and are operating asynchronously in a wireless environment subject to path loss, shadowing, and multipath fading. We determined the distribution of the aggregate interference and the error performance of the link. In this second part, we characterize the capacity of the link subject to both network interference and noise. Then, we put forth the concept of spectral outage probability (SOP), a new characterization of the aggregate radio-frequency emission generated by communicating nodes in a wireless network. We present some applications of the SOP, namely the establishment of spectral regulations and the design of covert military networks. The proposed framework captures all the essential physical parameters that affect the aggregate network emission, yet is simple enough to provide insights that may be of value in the design and deployment of wireless networks.Comment: To appear in IEEE Transactions on Wireless Communication

    A Survey of Techniques for Improving Security of GPUs

    Full text link
    Graphics processing unit (GPU), although a powerful performance-booster, also has many security vulnerabilities. Due to these, the GPU can act as a safe-haven for stealthy malware and the weakest `link' in the security `chain'. In this paper, we present a survey of techniques for analyzing and improving GPU security. We classify the works on key attributes to highlight their similarities and differences. More than informing users and researchers about GPU security techniques, this survey aims to increase their awareness about GPU security vulnerabilities and potential countermeasures

    Discovering New Vulnerabilities in Computer Systems

    Get PDF
    Vulnerability research plays a key role in preventing and defending against malicious computer system exploitations. Driven by a multi-billion dollar underground economy, cyber criminals today tirelessly launch malicious exploitations, threatening every aspect of daily computing. to effectively protect computer systems from devastation, it is imperative to discover and mitigate vulnerabilities before they fall into the offensive parties\u27 hands. This dissertation is dedicated to the research and discovery of new design and deployment vulnerabilities in three very different types of computer systems.;The first vulnerability is found in the automatic malicious binary (malware) detection system. Binary analysis, a central piece of technology for malware detection, are divided into two classes, static analysis and dynamic analysis. State-of-the-art detection systems employ both classes of analyses to complement each other\u27s strengths and weaknesses for improved detection results. However, we found that the commonly seen design patterns may suffer from evasion attacks. We demonstrate attacks on the vulnerabilities by designing and implementing a novel binary obfuscation technique.;The second vulnerability is located in the design of server system power management. Technological advancements have improved server system power efficiency and facilitated energy proportional computing. However, the change of power profile makes the power consumption subjected to unaudited influences of remote parties, leaving the server systems vulnerable to energy-targeted malicious exploit. We demonstrate an energy abusing attack on a standalone open Web server, measure the extent of the damage, and present a preliminary defense strategy.;The third vulnerability is discovered in the application of server virtualization technologies. Server virtualization greatly benefits today\u27s data centers and brings pervasive cloud computing a step closer to the general public. However, the practice of physical co-hosting virtual machines with different security privileges risks introducing covert channels that seriously threaten the information security in the cloud. We study the construction of high-bandwidth covert channels via the memory sub-system, and show a practical exploit of cross-virtual-machine covert channels on virtualized x86 platforms

    Bibliographical review on cyber attacks from a control oriented perspective

    Get PDF
    This paper presents a bibliographical review of definitions, classifications and applications concerning cyber attacks in networked control systems (NCSs) and cyber-physical systems (CPSs). This review tackles the topic from a control-oriented perspective, which is complementary to information or communication ones. After motivating the importance of developing new methods for attack detection and secure control, this review presents security objectives, attack modeling, and a characterization of considered attacks and threats presenting the detection mechanisms and remedial actions. In order to show the properties of each attack, as well as to provide some deeper insight into possible defense mechanisms, examples available in the literature are discussed. Finally, open research issues and paths are presented.Peer ReviewedPostprint (author's final draft

    Toward Secure Services from Untrusted Developers

    Get PDF
    We present a secure service prototype built from untrusted,contributed code.The service manages private data for a variety of different users, anduser programs frequently require access to other users' private data.However, aside from covert timing channels, no part of the service cancorrupt private data or leak it between users or outside the systemwithout permission from the data's owners.Instead, owners may choose to reveal their data in a controlled manner.This application model is demonstrated by Muenster, a job searchwebsite that protects both the integrity and secrecy of each user's data.In spite of running untrusted code, Muenster and other services canprevent overt leaks because the untrusted modules are constrained bythe operating system to follow pre-specified security policies, whichare nevertheless flexible enough for programmers to do useful work.We build Muenster atop Asbestos, a recently described operating systembased on a form of decentralized information flowcontrol

    An Information Security Education Initiative for Engineering and Computer Science

    Get PDF
    This paper puts forward a case for an educational initiative in information security at both the undergraduate and graduate levels. Its focus is on the need for such education, the desired educational outcomes, and how the outcomes may be assessed. A basic thesis of this paper is that the goals, methods, and evaluation techniques of information and computer security are consistent with and supportive of the stated goals of engineering education and the growing movement for outcomes-based assessment in higher education
    corecore