62 research outputs found

    Practical AI Value Alignment Using Stories

    Get PDF
    As more machine learning agents interact with humans, it is increasingly a prospect that an agent trained to perform a task optimally - using only a measure of task performance as feedback--can violate societal norms for acceptable behavior or cause harm. Consequently, it becomes necessary to prioritize task performance and ensure that AI actions do not have detrimental effects. Value alignment is a property of intelligent agents, wherein they solely pursue goals and activities that are non-harmful and beneficial to humans. Current approaches to value alignment largely depend on imitation learning or learning from demonstration methods. However, the dynamic nature of values makes it difficult to learn values through imitation learning-based approaches. To overcome the limitations of imitation learning-based approaches, in this work, we introduced a complementary technique in which a value-aligned prior is learned from naturally occurring stories that embody societal norms. This value-aligned prior can detect the normative and non-normative behavior of human society as well as describe the underlying social norms associated with these behaviors. To train our models, we sourced data from the children’s educational comic strip, Goofus \& Gallant. Additionally, we have built another dataset by utilizing a crowdsourcing platform. This dataset was created specifically to identify the norms or principles exhibited in the actions depicted within the comic strips. To build a normative prior model, we trained multiple machine learning models to classify natural language descriptions and visual demonstrations of situations found in the comic strip as either normative or non-normative and into different social norms. Finally, to train a value-aligned agent, we introduced a reinforcement learning-based method, in which we train an agent with two reward signals: a standard task performance reward plus a normative behavior reward. The test environment provides the standard task performance reward, while the normative behavior reward is derived from the value-aligned prior model. We show how variations on a policy shaping technique can balance these two sources of reward and produce policies that are both effective and perceived as being more normative. We test our value-alignment technique on different interactive text-based worlds; each world is designed specifically to challenge agents with a task as well as provide opportunities to deviate from the task to engage in normative and/or altruistic behavior

    Exploiting Structure for Scalable and Robust Deep Learning

    Get PDF
    Deep learning has seen great success training deep neural networks for complex prediction problems, such as large-scale image recognition, short-term time-series forecasting, and learning behavioral models for games with simple dynamics. However, neural networks have a number of weaknesses: 1) they are not sample-efficient and 2) they are often not robust against (adversarial) input perturbations. Hence, it is challenging to train neural networks for problems with exponential complexity, such as multi-agent games, complex long-term spatiotemporal dynamics, or noisy high-resolution image data. This thesis contributes methods to improve the sample efficiency, expressive power, and robustness of neural networks, by exploiting various forms of low-dimensional structure, such as spatiotemporal hierarchy and multi-agent coordination. We show the effectiveness of this approach in multiple learning paradigms: in both the supervised learning (e.g., imitation learning) and reinforcement learning settings. First, we introduce hierarchical neural networks that model both short-term actions and long-term goals from data, and can learn human-level behavioral models for spatiotemporal multi-agent games, such as basketball, using imitation learning. Second, in reinforcement learning, we show that behavioral policies with a hierarchical latent structure can efficiently learn forms of multi-agent coordination, which enables a form of structured exploration for faster learning. Third, we showcase tensor-train recurrent neural networks that can model high-order mutliplicative structure in dynamical systems (e.g., Lorenz dynamics). We show that this model class gives state-of-the-art long-term forecasting performance with very long time horizons for both simulation and real-world traffic and climate data. Finally, we demonstrate two methods for neural network robustness: 1) stability training, a form of stochastic data augmentation to make neural networks more robust, and 2) neural fingerprinting, a method that detects adversarial examples by validating the network’s behavior in the neighborhood of any given input. In sum, this thesis takes a step to enable machine learning for the next scale of problem complexity, such as rich spatiotemporal multi-agent games and large-scale robust predictions.</p

    BNAIC 2008:Proceedings of BNAIC 2008, the twentieth Belgian-Dutch Artificial Intelligence Conference

    Get PDF
    • …
    corecore