2,516 research outputs found

    A survey and classification of software-defined storage systems

    Get PDF
    The exponential growth of digital information is imposing increasing scale and efficiency demands on modern storage infrastructures. As infrastructure complexity increases, so does the difficulty in ensuring quality of service, maintainability, and resource fairness, raising unprecedented performance, scalability, and programmability challenges. Software-Defined Storage (SDS) addresses these challenges by cleanly disentangling control and data flows, easing management, and improving control functionality of conventional storage systems. Despite its momentum in the research community, many aspects of the paradigm are still unclear, undefined, and unexplored, leading to misunderstandings that hamper the research and development of novel SDS technologies. In this article, we present an in-depth study of SDS systems, providing a thorough description and categorization of each plane of functionality. Further, we propose a taxonomy and classification of existing SDS solutions according to different criteria. Finally, we provide key insights about the paradigm and discuss potential future research directions for the field.This work was financed by the Portuguese funding agency FCT-Fundacao para a Ciencia e a Tecnologia through national funds, the PhD grant SFRH/BD/146059/2019, the project ThreatAdapt (FCT-FNR/0002/2018), the LASIGE Research Unit (UIDB/00408/2020), and cofunded by the FEDER, where applicable

    Design, implementation and experimental evaluation of a network-slicing aware mobile protocol stack

    Get PDF
    Mención Internacional en el título de doctorWith the arrival of new generation mobile networks, we currently observe a paradigm shift, where monolithic network functions running on dedicated hardware are now implemented as software pieces that can be virtualized on general purpose hardware platforms. This paradigm shift stands on the softwarization of network functions and the adoption of virtualization techniques. Network Function Virtualization (NFV) comprises softwarization of network elements and virtualization of these components. It brings multiple advantages: (i) Flexibility, allowing an easy management of the virtual network functions (VNFs) (deploy, start, stop or update); (ii) efficiency, resources can be adequately consumed due to the increased flexibility of the network infrastructure; and (iii) reduced costs, due to the ability of sharing hardware resources. To this end, multiple challenges must be addressed to effectively leverage of all these benefits. Network Function Virtualization envisioned the concept of virtual network, resulting in a key enabler of 5G networks flexibility, Network Slicing. This new paradigm represents a new way to operate mobile networks where the underlying infrastructure is "sliced" into logically separated networks that can be customized to the specific needs of the tenant. This approach also enables the ability of instantiate VNFs at different locations of the infrastructure, choosing their optimal placement based on parameters such as the requirements of the service traversing the slice or the available resources. This decision process is called orchestration and involves all the VNFs withing the same network slice. The orchestrator is the entity in charge of managing network slices. Hands-on experiments on network slicing are essential to understand its benefits and limits, and to validate the design and deployment choices. While some network slicing prototypes have been built for Radio Access Networks (RANs), leveraging on the wide availability of radio hardware and open-source software, there is no currently open-source suite for end-to-end network slicing available to the research community. Similarly, orchestration mechanisms must be evaluated as well to properly validate theoretical solutions addressing diverse aspects such as resource assignment or service composition. This thesis contributes on the study of the mobile networks evolution regarding its softwarization and cloudification. We identify software patterns for network function virtualization, including the definition of a novel mobile architecture that squeezes the virtualization architecture by splitting functionality in atomic functions. Then, we effectively design, implement and evaluate of an open-source network slicing implementation. Our results show a per-slice customization without paying the price in terms of performance, also providing a slicing implementation to the research community. Moreover, we propose a framework to flexibly re-orchestrate a virtualized network, allowing on-the-fly re-orchestration without disrupting ongoing services. This framework can greatly improve performance under changing conditions. We evaluate the resulting performance in a realistic network slicing setup, showing the feasibility and advantages of flexible re-orchestration. Lastly and following the required re-design of network functions envisioned during the study of the evolution of mobile networks, we present a novel pipeline architecture specifically engineered for 4G/5G Physical Layers virtualized over clouds. The proposed design follows two objectives, resiliency upon unpredictable computing and parallelization to increase efficiency in multi-core clouds. To this end, we employ techniques such as tight deadline control, jitter-absorbing buffers, predictive Hybrid Automatic Repeat Request, and congestion control. Our experimental results show that our cloud-native approach attains > 95% of the theoretical spectrum efficiency in hostile environments where stateof- the-art architectures collapse.This work has been supported by IMDEA Networks InstitutePrograma de Doctorado en Ingeniería Telemática por la Universidad Carlos III de MadridPresidente: Francisco Valera Pintor.- Secretario: Vincenzo Sciancalepore.- Vocal: Xenofon Fouka

    Cross-VM network attacks & their countermeasures within cloud computing environments

    Get PDF
    Cloud computing is a contemporary model in which the computing resources are dynamically scaled-up and scaled-down to customers, hosted within large-scale multi-tenant systems. These resources are delivered as improved, cost-effective and available upon request to customers. As one of the main trends of IT industry in modern ages, cloud computing has extended momentum and started to transform the mode enterprises build and offer IT solutions. The primary motivation in using cloud computing model is cost-effectiveness. These motivations can compel Information and Communication Technologies (ICT) organizations to shift their sensitive data and critical infrastructure on cloud environments. Because of the complex nature of underlying cloud infrastructure, the cloud environments are facing a large number of challenges of misconfigurations, cyber-attacks, root-kits, malware instances etc which manifest themselves as a serious threat to cloud environments. These threats noticeably decline the general trustworthiness, reliability and accessibility of the cloud. Security is the primary concern of a cloud service model. However, a number of significant challenges revealed that cloud environments are not as much secure as one would expect. There is also a limited understanding regarding the offering of secure services in a cloud model that can counter such challenges. This indicates the significance of the fact that what establishes the threat in cloud model. One of the main threats in a cloud model is of cost-effectiveness, normally cloud providers reduce cost by sharing infrastructure between multiple un-trusted VMs. This sharing has also led to several problems including co-location attacks. Cloud providers mitigate co-location attacks by introducing the concept of isolation. Due to this, a guest VM cannot interfere with its host machine, and with other guest VMs running on the same system. Such isolation is one of the prime foundations of cloud security for major public providers. However, such logical boundaries are not impenetrable. A myriad of previous studies have demonstrated how co-resident VMs could be vulnerable to attacks through shared file systems, cache side-channels, or through compromising of hypervisor layer using rootkits. Thus, the threat of cross-VM attacks is still possible because an attacker uses one VM to control or access other VMs on the same hypervisor. Hence, multiple methods are devised for strategic VM placement in order to exploit co-residency. Despite the clear potential for co-location attacks for abusing shared memory and disk, fine grained cross-VM network-channel attacks have not yet been demonstrated. Current network based attacks exploit existing vulnerabilities in networking technologies, such as ARP spoofing and DNS poisoning, which are difficult to use for VM-targeted attacks. The most commonly discussed network-based challenges focus on the fact that cloud providers place more layers of isolation between co-resided VMs than in non-virtualized settings because the attacker and victim are often assigned to separate segmentation of virtual networks. However, it has been demonstrated that this is not necessarily sufficient to prevent manipulation of a victim VM’s traffic. This thesis presents a comprehensive method and empirical analysis on the advancement of co-location attacks in which a malicious VM can negatively affect the security and privacy of other co-located VMs as it breaches the security perimeter of the cloud model. In such a scenario, it is imperative for a cloud provider to be able to appropriately secure access to the data such that it reaches to the appropriate destination. The primary contribution of the work presented in this thesis is to introduce two innovative attack models in leading cloud models, impersonation and privilege escalation, that successfully breach the security perimeter of cloud models and also propose countermeasures that block such types of attacks. The attack model revealed in this thesis, is a combination of impersonation and mirroring. This experimental setting can exploit the network channel of cloud model and successfully redirects the network traffic of other co-located VMs. The main contribution of this attack model is to find a gap in the contemporary network cloud architecture that an attacker can exploit. Prior research has also exploited the network channel using ARP poisoning, spoofing but all such attack schemes have been countered as modern cloud providers place more layers of security features than in preceding settings. Impersonation relies on the already existing regular network devices in order to mislead the security perimeter of the cloud model. The other contribution presented of this thesis is ‘privilege escalation’ attack in which a non-root user can escalate a privilege level by using RoP technique on the network channel and control the management domain through which attacker can manage to control the other co-located VMs which they are not authorized to do so. Finally, a countermeasure solution has been proposed by directly modifying the open source code of cloud model that can inhibit all such attacks

    Enterprise Cloud Security Guidance and Strategies for Enterprises

    Get PDF
    Hinnanguliselt 72% ettevõtetest kasutavad vähemalt ühte pilves olevat rakendust või on mingi osa nende IT infrastruktuurist pilves. Uurimistööd näitavad, et 56% tehnoloogia valdkonna otsustajatest uurivad erinevaid võimalusi pilvelahenduste kasutamiseks. Eel-toodu tõttu on oluline mõista erinevaid pilveteenuste kasutusvõimalusi, ärivajadusi ja investeeringuid. Antud magistritöö hindab paljusid kasutegureid, mida pilverakenduste ja pilvearvutuse kasutamine pakub äritegevusele. Pilvearvutus pakub paindliku, taskuko-hast ja end tõestanud platvormi ärilahenduste ja IT lahenduste loomiseks. Pilvearvutuse kasutamine pakub ettevõtetele harukordset võimalust muuta teenuse pakkumist tõhusa-maks, juhtimist sujuvamaks ning viia IT teenused vastavusse pidevalt muutuvate äriva-jadustega. Pilvearvutuse kasutamine pakub rohkem kui ühe võimaluse ärivaldkondade usaldusväärseks toeks ning ühtlasi tõstab võimekust luua uusi ja innovaatilisi teenuseid. Olemasoleva kirjanduse mittetäielik analüüs toob esile selle, et enne ettevõtetes pilvela-henduste ja pilvearvutuse kasutuselevõttu on väga oluline pöörata tähelepanu kaasneva-tele turvalisuse väljakutsetele. Antud magistritöös on detailselt käsitletud peamisi pil-vandmetöötluse valdkonna turvalisuse probleeme ning töö järeldusena pakutakse välja soovitusi pilve turvalisuse juurutamiseks.Today an estimated 72% of enterprises use at least one cloud application or a percentage of their I.T infrastructure in the cloud. Research shows that 56% of the decision makers in technology are investigating more ways of leveraging the cloud. This makes it impor-tant to understand the different usage plans in cloud service models, business drivers and investments. This thesis measures the myriad benefits of using cloud applications, and the effect of cloud computing on business performance. As will be seen in the the-sis, cloud computing offers a flexible, affordable as well as proven platform for the pro-vision of business and IT services via the internet. Cloud computing provides companies with the rare opportunity of strengthening their efficiencies in service delivery, mana-gement streamlining, and the aligning of IT services with the ever changing business needs. In more ways than one, cloud computing provides solid support for business functions, alongside increasing the capacity for the development of new as well as inno-vative services. A non-exhaustive review of the existing literature revels that the security challenges faced by enterprises during cloud adoption and interoperability have to be addressed before the implementation of cloud computing. In this thesis, we provide a detailed overview of the key security issues in the realm of cloud computing and con-clude with the recommendations on the implementation of cloud security

    Efficient sharing mechanisms for virtualized multi-tenant heterogeneous networks

    Get PDF
    The explosion in data traffic, the physical resource constraints, and the insufficient financial incentives for deploying 5G networks, stress the need for a paradigm shift in network upgrades. Typically, operators are also the service providers, which charge the end users with low and flat tariffs, independently of the service enjoyed. A fine-scale management of the network resources is needed, both for optimizing costs and resource utilization, as well as for enabling new synergies among network owners and third-parties. In particular, operators could open their networks to third parties by means of fine-scale sharing agreements over customized networks for enhanced service provision, in exchange for an adequate return of investment for upgrading their infrastructures. The main objective of this thesis is to study the potential of fine-scale resource management and sharing mechanisms for enhancing service provision and for contributing to a sustainable road to 5G. More precisely, the state-of-the-art architectures and technologies for network programmability and scalability are studied, together with a novel paradigm for supporting service diversity and fine-scale sharing. We review the limits of conventional networks, we extend existing standardization efforts and define an enhanced architecture for enabling 5G networks' features (e.g., network-wide centralization and programmability). The potential of the proposed architecture is assessed in terms of flexible sharing and enhanced service provision, while the advantages of alternative business models are studied in terms of additional profits to the operators. We first study the data rate improvement achievable by means of spectrum and infrastructure sharing among operators and evaluate the profit increase justified by a better service provided. We present a scheme based on coalitional game theory for assessing the capability of accommodating more service requests when a cooperative approach is adopted, and for studying the conditions for beneficial sharing among coalitions of operators. Results show that: i) collaboration can be beneficial also in case of unbalanced cost redistribution within coalitions; ii) coalitions of equal-sized operators provide better profit opportunities and require lower tariffs. The second kind of sharing interaction that we consider is the one between operators and third-party service providers, in the form of fine-scale provision of customized portions of the network resources. We define a policy-based admission control mechanism, whose performance is compared with reference strategies. The proposed mechanism is based on auction theory and computes the optimal admission policy at a reduced complexity for different traffic loads and allocation frequencies. Because next-generation services include delay-critical services, we compare the admission control performances of conventional approaches with the proposed one, which proves to offer near real-time service provision and reduced complexity. Besides, it guarantees high revenues and low expenditures in exchange for negligible losses in terms of fairness towards service providers. To conclude, we study the case where adaptable timescales are adopted for the policy-based admission control, in order to promptly guarantee service requirements over traffic fluctuations. In order to reduce complexity, we consider the offline pre­computation of admission strategies with respect to reference network conditions, then we study the extension to unexplored conditions by means of computationally efficient methodologies. Performance is compared for different admission strategies by means of a proof of concept on real network traces. Results show that the proposed strategy provides a tradeoff in complexity and performance with respect to reference strategies, while reducing resource utilization and requirements on network awareness.La explosion del trafico de datos, los recursos limitados y la falta de incentivos para el desarrollo de 5G evidencian la necesidad de un cambio de paradigma en la gestion de las redes actuales. Los operadores de red suelen ser tambien proveedores de servicios, cobrando tarifas bajas y planas, independientemente del servicio ofrecido. Se necesita una gestion de recursos precisa para optimizar su utilizacion, y para permitir nuevas sinergias entre operadores y proveedores de servicios. Concretamente, los operadores podrian abrir sus redes a terceros compartiendolas de forma flexible y personalizada para mejorar la calidad de servicio a cambio de aumentar sus ganancias como incentivo para mejorar sus infraestructuras. El objetivo principal de esta tesis es estudiar el potencial de los mecanismos de gestion y comparticion de recursos a pequei\a escala para trazar un camino sostenible hacia el 5G. En concreto, se estudian las arquitecturas y tecnolog fas mas avanzadas de "programabilidad" y escalabilidad de las redes, junto a un nuevo paradigma para la diversificacion de servicios y la comparticion de recursos. Revisamos los limites de las redes convencionales, ampliamos los esfuerzos de estandarizacion existentes y definimos una arquitectura para habilitar la centralizacion y la programabilidad en toda la red. La arquitectura propuesta se evalua en terminos de flexibilidad en la comparticion de recursos, y de mejora en la prestacion de servicios, mientras que las ventajas de un modelo de negocio alternativo se estudian en terminos de ganancia para los operadores. En primer lugar, estudiamos el aumento en la tasa de datos gracias a un uso compartido del espectro y de las infraestructuras, y evaluamos la mejora en las ganancias de los operadores. Presentamos un esquema de admision basado en la teoria de juegos para acomodar mas solicitudes de servicio cuando se adopta un enfoque cooperativo, y para estudiar las condiciones para que la reparticion de recursos sea conveniente entre coaliciones de operadores. Los resultados ensei\an que: i) la colaboracion puede ser favorable tambien en caso de una redistribucion desigual de los costes en cada coalicion; ii) las coaliciones de operadores de igual tamai\o ofrecen mejores ganancias y requieren tarifas mas bajas. El segundo tipo de comparticion que consideramos se da entre operadores de red y proveedores de servicios, en forma de provision de recursos personalizada ya pequei\a escala. Definimos un mecanismo de control de trafico basado en polfticas de admision, cuyo rendimiento se compara con estrategias de referencia. El mecanismo propuesto se basa en la teoria de subastas y calcula la politica de admision optima con una complejidad reducida para diferentes cargas de trafico y tasa de asignacion. Con particular atencion a servicios 5G de baja latencia, comparamos las prestaciones de estrategias convencionales para el control de admision con las del metodo propuesto, que proporciona: i) un suministro de servicios casi en tiempo real; ii) una complejidad reducida; iii) unos ingresos elevados; y iv) unos gastos reducidos, a cambio de unas perdidas insignificantes en terminos de imparcialidad hacia los proveedores de servicios. Para concluir, estudiamos el caso en el que se adoptan escalas de tiempo adaptables para el control de admision, con el fin de garantizar puntualmente los requisitos de servicio bajo diferentes condiciones de trafico. Para reducir la complejidad, consideramos el calculo previo de las estrategias de admision con respecto a condiciones de red de referenda, adaptables a condiciones inexploradas por medio de metodologias computacionalmente eficientes. Se compara el rendimiento de diferentes estrategias de admision sobre trazas de trafico real. Los resultados muestran que la estrategia propuesta equilibra complejidad y ganancias, mientras se reduce la utilizacion de recursos y la necesidad de conocer el estado exacto de la red.Postprint (published version
    corecore