568 research outputs found

    Design for Child-Robot Play The implications of Design Research within the field of Human-Robot Interaction studies for Children

    Get PDF
    This thesis investigates the intersections of three disciplines, that are Design Research, Human-Robot Interaction studies, and Child Studies. In particular, this doctoral research is focused on two research questions, namely, what is (or might be) the role of design research in HRI? And, how to design acceptable and desirable child-robot play applications? The first chapter introduces an overview of the mutual interest between robotics and design that is at the basis of the research. On the one hand, the interest of design toward robotics is documented through some exemplary projects from artists and designers that speculate on the human-robot coexistence condition. Vice versa, the robotics interest toward design is documented by referring to some tracks of robotic conferences, scienti c workshops and robotics journals which focused on the design-robotics relationship. Finally, a brief description of the background conditions that characterized this doctoral research are introduced, such as the fact of being a research founded by a company. The second chapter provides an overview of the state of the art of the intersections between three multidisciplinary disciplines. First, a de nition of Design Research is provided, together with its main trends and open issues. Then, the review focuses on the contribution of Design Research to the HRI eld, which can be summed up in actions focused on three aspects: artefacts, stakeholders, and contexts. This is followed by a focus on the role of Design Research within the context of children studies, in which it is possible to identify two main design-child relationships: design as a method for developing children’s learning experiences; and children as part of the design process for developing novel interactive systems. The third chapter introduces the Research through Design (RtD) approach and its relevance in conducting design research in HRI. The proposed methodology, based on this approach, is particularly characterized by the presence of design explorations as study methods. These, in turn, are developed through a common project’s methodology, also reported in this chapter. The fourth chapter is dedicated to the analysis of the scenario in which the child-robot interaction takes place. This was aimed at understanding what is edutainment robotics for children, its common features, how it relates to existing children play types, and where the interaction takes place. The chapter provides also a focus on the relationship between children and technology on a more general level, through which two themes and relative design opportunities were identi ed: physically active play and objects-to-think-with. These were respectively addressed in the two design explorations presented in this thesis: Phygital Play and Shybo. The Phygital Play project consists of an exploration of natural interaction modalities with robots, through mixed-reality, for fostering children’s active behaviours. To this end, a game platform was developed for allowing children to play with or against a robot, through body movement. Shybo, instead, is a low-anthropomorphic robot for playful learning activities with children that can be carried out in educational contexts. The robot, which reacts to properties of the physical environment, is designed to support different kinds of experiences. Then, the chapter eight is dedicated to the research outcomes, that were de ned through a process of reflection. The contribution of the research was analysed and documented by focusing on three main levels, namely: artefact, knowledge and theory. The artefact level corresponds to the situated implementations developed through the projects. The knowledge level consists of a set of actionable principles, emerged from the results and lessons learned from the projects. At the theory level, a theoretical framework was proposed with the aim of informing the future design of child- robot play applications. Thelastchapterprovidesa naloverviewofthe doctoral research, a series of limitations regarding the research, its process and its outcomes, and some indications for future research

    Boosting children's creativity through creative interactions with social robots

    Get PDF
    Creativity is an ability with psychological and developmental benefits. Creative levels are dynamic and oscillate throughout life, with a first major decline occurring at the age of 7 years old. However, creativity is an ability that can be nurtured if trained, with evidence suggesting an increase in this ability with the use of validated creativity training. Yet, creativity training for young children (aged between 6-9 years old) appears as scarce. Additionally, existing training interventions resemble test-like formats and lack of playful dynamics that could engage children in creative practices over time. This PhD project aimed at contributing to creativity stimulation in children by proposing to use social robots as intervention tools, thus adding playful and interactive dynamics to the training. Towards this goal, we conducted three studies in schools, summer camps, and museums for children, that contributed to the design, fabrication, and experimental testing of a robot whose purpose was to re-balance creative levels. Study 1 (n = 140) aimed at testing the effect of existing activities with robots in creativity and provided initial evidence of the positive potential of robots for creativity training. Study 2 (n = 134) aimed at including children as co-designers of the robot, ensuring the robot’s design meets children’s needs and requirements. Study 3 (n = 130) investigated the effectiveness of this robot as a tool for creativity training, showing the potential of robots as creativity intervention tools. In sum, this PhD showed that robots can have a positive effect on boosting the creativity of children. This places social robots as promising tools for psychological interventions.Criatividade é uma habilidade com benefícios no desenvolvimento saudável. Os níveis de criatividade são dinâmicos e oscilam durante a vida, sendo que o primeiro maior declínio acontece aos 7 anos de idade. No entanto, a criatividade é uma habilidade que pode ser nutrida se treinada e evidências sugerem um aumento desta habilidade com o uso de programas validados de criatividade. Ainda assim, os programas de criatividade para crianças pequenas (entre os 6-9 anos de idade) são escassos. Adicionalmente, estes programas adquirem o formato parecido ao de testes, faltando-lhes dinâmicas de brincadeira e interatividade que poderão motivar as crianças a envolverem-se em práticas criativas ao longo do tempo. O presente projeto de doutoramento procurou contribuir para a estimulação da criatividade em crianças propondo usar robôs sociais como ferramenta de intervenção, adicionando dinâmicas de brincadeira e interação ao treino. Assim, conduzimos três estudos em escolas, campos de férias, e museus para crianças que contribuíram para o desenho, fabricação, e teste experimental de um robô cujo objetivo é ser uma ferramenta que contribui para aumentar os níveis de criatividade. O Estudo 1 (n = 140) procurou testar o efeito de atividade já existentes com robôs na criatividade e mostrou o potencial positivo do uso de robôs para o treino criativo. O Estudo 2 (n = 134) incluiu crianças como co-designers do robô, assegurando que o desenho do robô correspondeu às necessidades das crianças. O Estudo 2 (n = 130) investigou a eficácia deste robô como ferramenta para a criatividade, demonstrando o seu potencial para o treino da criatividade. Em suma, o presente doutoramento mostrou que os robôs poderão ter um potencial criativo em atividades com crianças. Desta forma, os robôs sociais poderão ser ferramentas promissoras em intervenções na psicologia

    Cognition, Affects et Interaction

    No full text
    International audienceCet ouvrage rassemble les travaux d’études et de recherche effectués dans le cadre du cours «Cognition, Affects et Interaction » que nous avons animé au 1er semestre 2015-2016. Cette deuxième édition de cours poursuit le principe inauguré en 2014 : aux cours magistraux donnés sur la thématique "Cognition, Interaction & Affects" qui donnent les outils méthodologiques des composantes de l’interaction socio-communicative, nous avons couplé une introduction à la robotique sociale et un apprentissage actif par travail de recherche en binômes. Le principe de ces travaux d’études et de recherche est d’effectuer une recherche bibliographique et de rédiger un article de synthèse sur un aspect de l’interaction homme-robot. Si plusieurs sujets ont été proposés aux étudiants en début d’année, certains binômes ont choisi d’aborder l’interaction avec un angle original qui reflète souvent les trajectoires de formation variés des étudiants en sciences cognitives (ingénierie, sociologie, psychologie, etc). Le résultat dépasse nos espérances : le lecteur trouvera une compilation d’articles argumentés de manière solide, rédigés de manière claire et présentés avec soin. Ces premières «publications» reflètent les capacités singulières de réflexion de cette promotion en nette augmentation par rapport à l’année précédente. Nous espérons que cette série d’ouvrages disponibles sous HAL puisse servir de point d’entrée à des étudiants ou chercheurs intéressés à explorer ce champ de recherches pluri-disciplinaire

    Flat vs. Expressive Storytelling: Young Children’s Learning and Retention of a Social Robot’s Narrative

    Get PDF
    Prior research with preschool children has established that dialogic or active book reading is an effective method for expanding young children’s vocabulary. In this exploratory study, we asked whether similar benefits are observed when a robot engages in dialogic reading with preschoolers. Given the established effectiveness of active reading, we also asked whether this effectiveness was critically dependent on the expressive characteristics of the robot. For approximately half the children, the robot’s active reading was expressive; the robot’s voice included a wide range of intonation and emotion (Expressive). For the remaining children, the robot read and conversed with a flat voice, which sounded similar to a classic text-to-speech engine and had little dynamic range (Flat). The robot’s movements were kept constant across conditions. We performed a verification study using Amazon Mechanical Turk (AMT) to confirm that the Expressive robot was viewed as significantly more expressive, more emotional, and less passive than the Flat robot. We invited 45 preschoolers with an average age of 5 years who were either English Language Learners (ELL), bilingual, or native English speakers to engage in the reading task with the robot. The robot narrated a story from a picture book, using active reading techniques and including a set of target vocabulary words in the narration. Children were post-tested on the vocabulary words and were also asked to retell the story to a puppet. A subset of 34 children performed a second story retelling 4–6 weeks later. Children reported liking and learning from the robot a similar amount in the Expressive and Flat conditions. However, as compared to children in the Flat condition, children in the Expressive condition were more concentrated and engaged as indexed by their facial expressions; they emulated the robot’s story more in their story retells; and they told longer stories during their delayed retelling. Furthermore, children who responded to the robot’s active reading questions were more likely to correctly identify the target vocabulary words in the Expressive condition than in the Flat condition. Taken together, these results suggest that children may benefit more from the expressive robot than from the flat robot

    A systematic literature review of decision-making and control systems for autonomous and social robots

    Get PDF
    In the last years, considerable research has been carried out to develop robots that can improve our quality of life during tedious and challenging tasks. In these contexts, robots operating without human supervision open many possibilities to assist people in their daily activities. When autonomous robots collaborate with humans, social skills are necessary for adequate communication and cooperation. Considering these facts, endowing autonomous and social robots with decision-making and control models is critical for appropriately fulfiling their initial goals. This manuscript presents a systematic review of the evolution of decision-making systems and control architectures for autonomous and social robots in the last three decades. These architectures have been incorporating new methods based on biologically inspired models and Machine Learning to enhance these systems’ possibilities to developed societies. The review explores the most novel advances in each application area, comparing their most essential features. Additionally, we describe the current challenges of software architecture devoted to action selection, an analysis not provided in similar reviews of behavioural models for autonomous and social robots. Finally, we present the future directions that these systems can take in the future.The research leading to these results has received funding from the projects: Robots Sociales para Estimulación Física, Cognitiva y Afectiva de Mayores (ROSES), RTI2018-096338-B-I00, funded by the Ministerio de Ciencia, Innovación y Universidades; Robots sociales para mitigar la soledad y el aislamiento en mayores (SOROLI), PID2021-123941OA-I00, funded by Agencia Estatal de Investigación (AEI), Spanish Ministerio de Ciencia e Innovación. This publication is part of the R&D&I project PLEC2021-007819 funded by MCIN/AEI/10.13039/501100011033 and by the European Union NextGenerationEU/PRTR

    Overcoming barriers and increasing independence: service robots for elderly and disabled people

    Get PDF
    This paper discusses the potential for service robots to overcome barriers and increase independence of elderly and disabled people. It includes a brief overview of the existing uses of service robots by disabled and elderly people and advances in technology which will make new uses possible and provides suggestions for some of these new applications. The paper also considers the design and other conditions to be met for user acceptance. It also discusses the complementarity of assistive service robots and personal assistance and considers the types of applications and users for which service robots are and are not suitable
    corecore