199 research outputs found

    DRONE DELIVERY OF CBNRECy – DEW WEAPONS Emerging Threats of Mini-Weapons of Mass Destruction and Disruption (WMDD)

    Get PDF
    Drone Delivery of CBNRECy – DEW Weapons: Emerging Threats of Mini-Weapons of Mass Destruction and Disruption (WMDD) is our sixth textbook in a series covering the world of UASs and UUVs. Our textbook takes on a whole new purview for UAS / CUAS/ UUV (drones) – how they can be used to deploy Weapons of Mass Destruction and Deception against CBRNE and civilian targets of opportunity. We are concerned with the future use of these inexpensive devices and their availability to maleficent actors. Our work suggests that UASs in air and underwater UUVs will be the future of military and civilian terrorist operations. UAS / UUVs can deliver a huge punch for a low investment and minimize human casualties.https://newprairiepress.org/ebooks/1046/thumbnail.jp

    Seamless Communication for Crises Management

    Get PDF
    SECRICOM is proposed as a collaborative research project aiming at development of a reference security platform for EU crisis management operations with two essential ambitions: (A) Solve or mitigate problems of contemporary crisis communication infrastructures (Tetra, GSM, Citizen Band, IP) such as poor interoperability of specialized communication means, vulnerability against tapping and misuse, lack of possibilities to recover from failures, inability to use alternative data carrier and high deployment and operational costs. (B) Add new smart functions to existing services which will make the communication more effective and helpful for users. Smart functions will be provided by distributed IT systems based on an agents’ infrastructure. Achieving these two project ambitions will allow creating a pervasive and trusted communication infrastructure fulfilling requirements of crisis management users and ready for immediate application

    Economically sustainable public security and emergency network exploiting a broadband communications satellite

    Get PDF
    The research contributes to work in Rapid Deployment of a National Public Security and Emergency Communications Network using Communication Satellite Broadband. Although studies in Public Security Communication networks have examined the use of communications satellite as an integral part of the Communication Infrastructure, there has not been an in-depth design analysis of an optimized regional broadband-based communication satellite in relation to the envisaged service coverage area, with little or no terrestrial last-mile telecommunications infrastructure for delivery of satellite solutions, applications and services. As such, the research provides a case study of a Nigerian Public Safety Security Communications Pilot project deployed in regions of the African continent with inadequate terrestrial last mile infrastructure and thus requiring a robust regional Communications Satellite complemented with variants of terrestrial wireless technologies to bridge the digital hiatus as a short and medium term measure apart from other strategic needs. The research not only addresses the pivotal role of a secured integrated communications Public safety network for security agencies and emergency service organizations with its potential to foster efficient information symmetry amongst their operations including during emergency and crisis management in a timely manner but demonstrates a working model of how analogue spectrum meant for Push-to-Talk (PTT) services can be re-farmed and digitalized as a “dedicated” broadband-based public communications system. The network’s sustainability can be secured by using excess capacity for the strategic commercial telecommunication needs of the state and its citizens. Utilization of scarce spectrum has been deployed for Nigeria’s Cashless policy pilot project for financial and digital inclusion. This effectively drives the universal access goals, without exclusivity, in a continent, which still remains the least wired in the world

    ICT Update 69: Engaging with communities through crowdsourcing

    No full text
    ICT Update is a bimonthly printed and on-line magazine (http://ictupdate.cta.int) and an accompanying e-mail newsletter published by CTA. This issue focuses on crowd sourcing

    ICT for Disaster Risk Management:The Academy of ICT Essentials for Government Leaders

    Get PDF

    System elements required to guarantee the reliability, availability and integrity of decision-making information in a complex airborne autonomous system

    Get PDF
    Current air traffic management systems are centred on piloted aircraft, in which all the main decisions are made by humans. In the world of autonomous vehicles, there will be a driving need for decisions to be made by the system rather than by humans due to the benefits of more automation such as reducing the likelihood of human error, handling more air traffic in national airspace safely, providing prior warnings of potential conflicts etc. The system will have to decide on courses of action that will have highly safety critical consequences. One way to ensure these decisions are robust is to guarantee that the information being used for the decision is valid and of very high integrity. [Continues.

    GPS system implementation using software defined radio platform

    Get PDF
    Every day new technologies are being developed and introduced to the market, shaping people's daily life. The principal aim of our society is making up an ecosystem that provides anything, anytime, anywhere. For this purpose, more powerful and efficient devices, improved devices are being designed as the key ingredients. In this report it is shown the study and the implementation of a Global Positioning Service device, a technology that is used by more than four thousand millions of users. The present work explores the Global Positioning System development using a Software Radio Defined Platform. The implementation of this development is divided into four main parts: GPS signal acquisition and treatment carried out by the receptor, GPS received signal demodulation using Binary Phase Shift Keying, decoding through Direct Sequence Spread Spectrum of the previous demodulated signal, and finally, once the necessary data from the message was obtained, the position estimation. In order to perform all the process it was used as working tool a device known as Universal Software Radio Peripheral. This device allows for analysing from a visual point of view more accurate the four different phases explained previously. These phases represent the basis to be able to achieve the necessary knowledge about proper operation ot the Global Positioning System. The whole application was developd using LabVIEW software, a data ow visual programming language and environment designed by National Instruments.Cada día nuevas tecnologías son desarrolladas e introducidas en el mercado, modelando así la vida diaria de la sociedad. El principal objetivo de nuestra sociedad es conseguir crear un ecosistema que proporcione lo que sea necesario, en cualquier momento y en cualquier lugar. Para ello, equipos más potentes, eficientes y mejorados son diseñados como los ingredientes claves de este nuevo ecosistema. En este trabajo se presenta el estudio y la implementación de un receptor de señales GPS, tecnología que hoy en día es utilizada por más de cuatro mil millones de usuarios. Para ello se lleva a cabo el desarrollo del Sistema de Posicionamiento Global (GPS) mediante la utilización de una plataforma de radio definida por software. La implementación del desarrollo se divide en cuatro procesos principales: adquisición y el tratamiento de la señal GPS por parte del receptor, demodulación por desplazamiento de fase binaria (BPSK) de la señal GPS recibida, decodificación en espectro ensanchado por secuencia directa (DSSS) de la señal demodulada y por último, una vez obtenidos los datos necesarios del mensaje, la estimación de la posición. Para la realización de todo el proceso se utilizó como herramienta de trabajo un dispositivo conocido como Universal Software Radio Peripheral (USRP). Este aparato permite analizar desde un punto de vista visual más preciso las cuatro fases indicadas anteriormente. Estas fases suponen la base para lograr adquirir el conocimiento necesario sobre el funcionamiento del Sistema de Posicionamiento Global (GPS). El desarrollo completo de la aplicación fue implementado utilizando LabVIEW, un entorno de desarrollo integrado diseñado por la conocida compañía National Instruments.Ingeniería en Tecnologías de Telecomunicació

    Cyber vulnerabilities in the aviation ecosystem: reducing the attack surface through an international aviation trust framework

    Get PDF
    Now, at the beginning of the 21st century, the aviation system is well developed, however, the community is at similar juncture as the beginning of the 2oth century, only this time the civil aviation system itself is being rapidly transformed by a wave of digital technologies that hold great promise but could also expose the aviation system to new threats. Certain aspects of the digital transformation of the aviation system, based on network connectivity, must be guided to ensure that it generates ever higher-levels of global interoperability and safety. To address this challenge, it is necessary to go back to fundamental principles. It is necessary to establish a system of identity and trust that integrates the wisdom of the Chicago Convention into the digital world that is already overtaking the aviation industry. Service providers, aircraft manufactures, and avionic producers, are all putting in place their own systems of identity and trust as a matter of necessity. That means, in the near future, an aircraft may need different digital certificates to connect with its satellite communications service provider, retrieve data from the airline operations centre, update its avionics software, download engines monitoring data and other functions. The potential number of proprietary secure links is nearly endless. This patchwork of disparate efforts to reduce the attack surface to air and ground operations will add complexity to the system that will be costly to maintain and will offer a myriad of gaps for adversaries to exploit. In the absence of global direction, different manufactures and different States will take different approaches. However, if a globally acceptable system for identity and trust that can be used by manned and unmanned aircraft indistinctively as well as by different service providers and users is available it would likely be embraced by many or all. As such, based on the new vulnerabilities brought by the evolution of the air navigation system through the intense use of digital and connected technologies, the object of this research relates to the vulnerabilities of the aviation system to a cyber-attack and the objective of this thesis is to propose a concept of operations that allows the implementation of a framework able to provide positive digital identification of all members of the aviation community through specific processes and procedures and a virtual network able to preserve the confidentiality, integrity and availability of the data and information being exchanged at the same time it increases the resilience of operations.Atualmente, no início do século vinte e um, a aviação está em uma situação similar ao início do século vinte, entretanto, desta vez, o sistema de aviação civil está bem consolidado, mas se transformando rapidamente motivado por uma onda de novas tecnologias que apresentam grandes promessas, mas que ao mesmo tempo podem expor a aviação a novas ameaças. Certos aspectos da transformação digital do sistema de aviação civil, baseado em redes que permitem ampla conectividade, devem ser corretamente orientados para garantir níveis globais de segurança e interoperabilidade ainda mais elevados. Para enfrentar esse desafio, necessário se faz o estabelecimento de um sistema de identidades digitais e confiança que integre a sabedoria da Convenção de Chicago ao mundo digital que está invadindo a indústria da aviação. Provedores de serviços, fabricantes de aeronaves e aviônicos estão todos colocando em prática seus próprios sistemas de identificação e confiança por necessidade. Isso significa que em um futuro próximo, uma aeronave poderá precisar de diferentes certificados para conectar-se com seus provedores de comunicações por satélite, receber dados de um centro de coordenação de uma compania aérea, atualizar programas em seus aviônicos, baixar dados para monitoramento do funcionamento de seus motores e outras funções. Esse conjunto de iniciativas isoladas para se reduzir a superfície de ataque cibernético para operações no solo e no ar adicionam complexidade ao sistema considerando que essas iniciativas isoladas tornam o sistema como um todo custoso para se manter e também oferecem uma série de vulnerabilidades a serem exploradas por atores mal intencionados. Na ausência de uma direção global, diferentes fabricantes, provedores de serviços e Estados tomarão direções distintas. Entretanto, se um sistema global de identificação digital e confiança que possa ser usado indistintamente pela aviação tripulada e não tripulada, por provedores de serviços, fabricantes e usuários for posto em prática, é muito provável que o mesmo seja adotado por todos dentro do sistema de aviação civil. Portanto, baseado nas novas vulnerabilidades que a evolução dos sistemas de navegação aérea estão trazendo com o uso intenso de tecnologias digitais e conectadas, o objeto desta tese está relacionado às vulnerabilidades do sistema de aviação civil a um ataque cibernético e o objetivo foi o de propor um conceito operacional que permitisse a implementação de uma estrutura capaz de identificar todos os atores da comunidade de aviação civil através de procedimentos e processos específicos e uma rede virtual para preservar a confidencialidade, a integridade e a disponibilidade das informações e dados sendo intercambiados ao mesmo tempo em que a resiliência do sistema é melhorada através de uma arquitetura específica

    Space Systems: Emerging Technologies and Operations

    Get PDF
    SPACE SYSTEMS: EMERGING TECHNOLOGIES AND OPERATIONS is our seventh textbook in a series covering the world of UASs / CUAS/ UUVs. Other textbooks in our series are Drone Delivery of CBNRECy – DEW Weapons: Emerging Threats of Mini-Weapons of Mass Destruction and Disruption (WMDD); Disruptive Technologies with applications in Airline, Marine, Defense Industries; Unmanned Vehicle Systems & Operations On Air, Sea, Land; Counter Unmanned Aircraft Systems Technologies and Operations; Unmanned Aircraft Systems in the Cyber Domain: Protecting USA’s Advanced Air Assets, 2nd edition; and Unmanned Aircraft Systems (UAS) in the Cyber Domain Protecting USA\u27s Advanced Air Assets, 1st edition. Our previous six titles have received considerable global recognition in the field. (Nichols & Carter, 2022) (Nichols et al., 2021) (Nichols R. K. et al., 2020) (Nichols R. et al., 2020) (Nichols R. et al., 2019) (Nichols R. K., 2018) Our seventh title takes on a new purview of Space. Let\u27s think of Space as divided into four regions. These are Planets, solar systems, the great dark void (which fall into the purview of astronomers and astrophysics), and the Dreamer Region. The earth, from a measurement standpoint, is the baseline of Space. It is the purview of geographers, engineers, scientists, politicians, and romantics. Flying high above the earth are Satellites. Military and commercial organizations govern their purview. The lowest altitude at which air resistance is low enough to permit a single complete, unpowered orbit is approximately 80 miles (125 km) above the earth\u27s surface. Normal Low Earth Orbit (LEO) satellite launches range between 99 miles (160 km) to 155 miles (250 km). Satellites in higher orbits experience less drag and can remain in Space longer in service. Geosynchronous orbit is around 22,000 miles (35,000 km). However, orbits can be even higher. UASs (Drones) have a maximum altitude of about 33,000 ft (10 km) because rotating rotors become physically limiting. (Nichols R. et al., 2019) Recreational drones fly at or below 400 ft in controlled airspace (Class B, C, D, E) and are permitted with prior authorization by using a LAANC or DroneZone. Recreational drones are permitted to fly at or below 400 ft in Class G (uncontrolled) airspace. (FAA, 2022) However, between 400 ft and 33,000 ft is in the purview of DREAMERS. In the DREAMERS region, Space has its most interesting technological emergence. We see emerging technologies and operations that may have profound effects on humanity. This is the mission our book addresses. We look at the Dreamer Region from three perspectives:1) a Military view where intelligence, jamming, spoofing, advanced materials, and hypersonics are in play; 2) the Operational Dreamer Region; whichincludes Space-based platform vulnerabilities, trash, disaster recovery management, A.I., manufacturing, and extended reality; and 3) the Humanitarian Use of Space technologies; which includes precision agriculture wildlife tracking, fire risk zone identification, and improving the global food supply and cattle management. Here’s our book’s breakdown: SECTION 1 C4ISR and Emerging Space Technologies. C4ISR stands for Command, Control, Communications, Computers, Intelligence, Surveillance, and Reconnaissance. Four chapters address the military: Current State of Space Operations; Satellite Killers and Hypersonic Drones; Space Electronic Warfare, Jamming, Spoofing, and ECD; and the challenges of Manufacturing in Space. SECTION 2: Space Challenges and Operations covers in five chapters a wide purview of challenges that result from operations in Space, such as Exploration of Key Infrastructure Vulnerabilities from Space-Based Platforms; Trash Collection and Tracking in Space; Leveraging Space for Disaster Risk Reduction and Management; Bio-threats to Agriculture and Solutions From Space; and rounding out the lineup is a chapter on Modelling, Simulation, and Extended Reality. SECTION 3: Humanitarian Use of Space Technologies is our DREAMERS section. It introduces effective use of Drones and Precision Agriculture; and Civilian Use of Space for Environmental, Wildlife Tracking, and Fire Risk Zone Identification. SECTION 3 is our Hope for Humanity and Positive Global Change. Just think if the technologies we discuss, when put into responsible hands, could increase food production by 1-2%. How many more millions of families could have food on their tables? State-of-the-Art research by a team of fifteen SMEs is incorporated into our book. We trust you will enjoy reading it as much as we have in its writing. There is hope for the future.https://newprairiepress.org/ebooks/1047/thumbnail.jp

    Emerging Informatics

    Get PDF
    The book on emerging informatics brings together the new concepts and applications that will help define and outline problem solving methods and features in designing business and human systems. It covers international aspects of information systems design in which many relevant technologies are introduced for the welfare of human and business systems. This initiative can be viewed as an emergent area of informatics that helps better conceptualise and design new world-class solutions. The book provides four flexible sections that accommodate total of fourteen chapters. The section specifies learning contexts in emerging fields. Each chapter presents a clear basis through the problem conception and its applicable technological solutions. I hope this will help further exploration of knowledge in the informatics discipline
    corecore