592 research outputs found

    A Risk-Based Optimization Framework for Security Systems Upgrades at Airports

    Get PDF
    Airports are fast-growing dynamic infrastructure assets. For example, the Canadian airport industry is growing by 5% annually and generates about $8 billion yearly. Since the 9/11 tragedy, airport security has been of paramount importance both in Canada and worldwide. Consequently, in 2002, in the wake of the attacks, the International Civil Aviation Organization (ICAO) put into force revised aviation security standards and recommended practices, and began a Universal Security Audit Program (USAP), in order to insure the worldwide safeguarding of civil aviation in general, and of airports in particular, against unlawful interference. To improve aviation security at both the national level and for individual airport, airport authorities in North America have initiated extensive programs to help quantify, detect, deter, and mitigate security risk. At the research level, a number of studies have examined scenarios involving threats to airports, the factors that contribute to airport vulnerability, and decision support systems for security management. However, more work is still required in the area of developing decision support tools that can assist airport officials in meeting the challenges associated with decision about upgrades; determining the status of their security systems and efficiently allocating financial resources to improve them to the level required. To help airport authorities make cost-effective decisions about airport security upgrades, this research has developed a risk-based optimization framework. The framework assists airport officials in quantitatively assessing the status of threats to their airports, the vulnerability to their security systems, and the consequences of security breaches. A key element of this framework is a new quantitative security metric ; the aim of which is to assist airport authorities self-assess the condition of their security systems, and to produce security risk indices that decision makers can use as prioritizing criteria and constraints when meeting decisions about security upgrades. These indices have been utilized to formulate an automated decision support system for upgrading security systems in airports. Because they represent one of the most important security systems in an airport, the research focuses on passenger and cabin baggage screening systems. Based on an analysis of the related threats, vulnerabilities and consequences throughout the flow of passengers, cabin baggage, and checked-in luggage, the proposed framework incorporates an optimization model for determining the most cost-effective countermeasures that can minimize security risks. For this purpose, the framework first calculates the level of possible improvement in security using a new risk metric. Among the important features of the framework is the fact that it allows airport officials to perform multiple “what-if” scenarios, to consider the limitations of security upgrade budgets, and to incorporate airport-specific requirements. Based on the received positive feedback from two actual airports, the framework can be extended to include other facets of security in airports, and to form a comprehensive asset management system for upgrading security at both single and multiple airports. From a broader perspective, this research contributes to the improvement of security in a major transportation sector that has an enormous impact on economic growth and on the welfare of regional, national and international societies

    Prevention of terrorism : an assessment of prior POM work and future potentials

    Get PDF
    © 2020 Production and Operations Management Society In this study, we review POM-based research related to prevention of terrorism. According to the Federal Emergency Management Agency (FEMA) terrorist attacks have the potential to be prevented. Consequently, the focus of this study is on security enhancement and improving the resiliency of a nation to prevent terrorist attacks. Accordingly, we review articles from the 25 top journals, [following procedures developed by Gupta et al. (2016)], in the fields of Production and Operations Management, Operations Research, Management Science, and Supply Chain Management. In addition, we searched some selected journals in the fields of Information Sciences, Political Science, and Economics. This literature is organized and reviewed under the following seven core capabilities defined by the Department of Homeland Security (DHS): (1) Intelligence and Information Sharing, (2) Planning, (3) Interdiction and Disruption, (4) Screening, Search, and Detection, (5) Forensics and Attribution, (6) Public Information and Warning, and (7) Operational Coordination. We found that POM research on terrorism is primarily driven by the type of information that a defending country and a terrorist have about each other. Game theory is the main technique that is used in most research papers. Possible directions for future research are discussed

    Please fasten your seatbelt : Increasing civil aviation safety

    Get PDF
    Air transportation is considered as the safest mode of transport. In the face of many accidents and acts of terrorism that mass media are informing about, there are doubts appearing if that statement is reliable. The aim of the thesis was to show the safety issues in civil aviation - current situation and gradual changes within the sector that lead to increased safety. It was divided into two sections – theoretical framework, which gave the theory over the topic and the empirical part – a survey conducted among the passengers of the PoznaƄ-Ɓawica Airport. The author based the theoretical part on the online articles, the articles in journals, books, governmental statistics, a seminar presentation, secondary data research, official reports of the air crashes and many more. The empirical part was produced by the author as primary data and it shows passengers’ attitude towards flying, their threats, their feelings about the security measures and the opinion about the PoznaƄ-Ɓawica Airport. The result of this project has shown a few things. The theory showed the importance of proper training of the employees working in the sector of aviation. It also presented the human factors as the main cause of the accidents and the aspect of the terrorism – actions undertaken to prevent it and its possible consequences in tourism and economy. To have an image which makes flying safe from entering the airport until receiving luggage at the destination, the author presents the instruments helping to provide that. For example: Instrument Landing System (ILS), Air Traffic Control (ATC), luggage systems and protection from the animals. Also the main organizations in aviation were introduced and so was the airport considered in research section

    A Building Information Modeling (BIM)-centric Digital Ecosystem for Smart Airport Life Cycle Management

    Get PDF
    An increasing number of new airport infrastructure construction and improvement projects are being delivered in today\u27s modern world. However, value creation is a recurring issue due to inefficiencies in managing capital expenditures (CapEx) and operating expenses (OpEx), while trying to optimize project constraints of scope, time, cost, quality, and resources. In this new era of smart infrastructure, digitalization transforms the way projects are planned and delivered. Building Information Modeling (BIM) is a key digital process technique that has become an imperative for today\u27s Architecture, Engineering, Construction and Operations (AECO) sector. This research suggests a BIM-centric digital ecosystem by detailing technical and strategic aspects of Airport BIM implementation and digital technology integration from a life cycle perspective. This research provides a novel approach for consistent and continuous use of digital information between business and functional levels of an airport by developing a digital platform solution that will enable seamless flow of information across functions. Accordingly, this study targets to achieve three objectives: 1- To provide a scalable know-how of BIM-enabled digital transformation; 2- To guide airport owners and major stakeholders towards converging information siloes for airport life cycle data management by an Airport BIM Framework; 3- To develop a BIM-based digital platform architecture towards realization of an airport digital twin for airport infrastructure life cycle management. Airport infrastructures can be considered as a System of Systems (SoS). As such, Model Based Systems Engineering (MBSE) with Systems Modeling Language (SysML) is selected as the key methodology towards designing a digital ecosystem. Applying MBSE principles leads to forming an integrating framework for managing the digital ecosystem. Furthermore, this research adopts convergent parallel mixed methods to collect and analyze multiple forms of data. Data collection tools include extensive literature and industry review; an online questionnaire; semi-structured interviews with airport owner parties; focus group discussions; first-hand observations; and document reviews. Data analysis stage includes multiple explanatory case study analyses, thematic analysis, project mapping, percent coverage analysis for coded themes to achieve Objective 1; thematic analysis, cluster analysis, framework analysis, and non-parametric statistical analysis for Objective 2; and qualitative content analysis, non-parametric statistical analysis to accomplish Objective 3. This research presents a novel roadmap toward facilitation of smart airports with alignment and integration of disruptive technologies with business and operational aspects of airports. Multiple comprehensive case study analyses on international large-hub airports and triangulation of organization-level and project-level results systematically generate scalable technical and strategic guidelines for BIM implementation. The proposed platform architecture will incentivize major stakeholders for value-creation, data sharing, and control throughout a project life cycle. Introducing scalability and minimizing complexity for end-users through a digital platform approach will lead to a more connected environment. Consequently, a digital ecosystem enables sophisticated interaction between people, places, and assets. Model-driven approach provides an effective strategy for enhanced decision-making that helps optimization of project resources and allows fast adaptation to emerging business and operational demands. Accordingly, airport sustainability measures -economic vitality, operational efficiency, natural resources, and social responsibility- will improve due to higher levels of efficiency in CapEx and OpEx. Changes in business models for large capital investments and introducing sustainability to supply chains are among the anticipated broader impacts of this study

    Resource allocation optimization problems in the public sector

    Get PDF
    This dissertation consists of three distinct, although conceptually related, public sector topics: the Transportation Security Agency (TSA), U.S. Customs and Border Patrol (CBP), and the Georgia Trauma Care Network Commission (GTCNC). The topics are unified in their mathematical modeling and mixed-integer programming solution strategies. In Chapter 2, we discuss strategies for solving large-scale integer programs to include column generation and the known heuristic of particle swarm optimization (PSO). In order to solve problems with an exponential number of decision variables, we employ Dantzig-Wolfe decomposition to take advantage of the special subproblem structures encountered in resource allocation problems. In each of the resource allocation problems presented, we concentrate on selecting an optimal portfolio of improvement measures. In most cases, the number of potential portfolios of investment is too large to be expressed explicitly or stored on a computer. We use column generation to effectively solve these problems to optimality, but are hindered by the solution time and large CPU requirement. We explore utilizing multi-swarm particle swarm optimization to solve the decomposition heuristically. We also explore integrating multi-swarm PSO into the column generation framework to solve the pricing problem for entering columns of negative reduced cost. In Chapter 3, we present a TSA problem to allocate security measures across all federally funded airports nationwide. This project establishes a quantitative construct for enterprise risk assessment and optimal resource allocation to achieve the best aviation security. We first analyze and model the various aviation transportation risks and establish their interdependencies. The mixed-integer program determines how best to invest any additional security measures for the best overall risk protection and return on investment. Our analysis involves cascading and inter-dependency modeling of the multi-tier risk taxonomy and overlaying security measurements. The model selects optimal security measure allocations for each airport with the objectives to minimize the probability of false clears, maximize the probability of threat detection, and maximize the risk posture (ability to mitigate risks) in aviation security. The risk assessment and optimal resource allocation construct are generalizable and are applied to the CBP problem. In Chapter 4, we optimize security measure investments to achieve the most cost-effective deterrence and detection capabilities for the CBP. A large-scale resource allocation integer program was successfully modeled that rapidly returns good Pareto optimal results. The model incorporates the utility of each measure, the probability of success, along with multiple objectives. To the best of our knowledge, our work presents the first mathematical model that optimizes security strategies for the CBP and is the first to introduce a utility factor to emphasize deterrence and detection impact. The model accommodates different resources, constraints, and various types of objectives. In Chapter 5, we analyze the emergency trauma network problem first by simulation. The simulation offers a framework of resource allocation for trauma systems and possible ways to evaluate the impact of the investments on the overall performance of the trauma system. The simulation works as an effective proof of concept to demonstrate that improvements to patient well-being can be measured and that alternative solutions can be analyzed. We then explore three different formulations to model the Emergency Trauma Network as a mixed-integer programming model. The first model is a Multi-Region, Multi-Depot, Multi-Trip Vehicle Routing Problem with Time Windows. This is a known expansion of the vehicle routing problem that has been extended to model the Georgia trauma network. We then adapt an Ambulance Routing Problem (ARP) to the previously mentioned VRP. There are no known ARPs of this magnitude/extension of a VRP. One of the primary differences is many ARPs are constructed for disaster scenarios versus day-to-day emergency trauma operations. The new ARP also implements more constraints based on trauma level limitations for patients and hospitals. Lastly, the Resource Allocation ARP is constructed to reflect the investment decisions presented in the simulation.Ph.D

    The assessment of the relationship between information technology (IT) and airport performance

    Get PDF
    The evolution of the airport business is demonstrated by airports that are adopting new business strategies and commercial models, which allow them to be, for example, service providers instead of real-estate managers, with the focus on cost reduction and increasing non-aeronautical (commercial) revenues. Information technology (IT) can be used by airports to achieve their business goals, such as enhancing performance by delivering cost reductions and generating additional revenue streams. Airports operate in an increasingly competitive and dynamic market, with the aim of attracting a larger share of hub traffic from neighbouring airports. Therefore, financial and operational performance will be key elements for airlines when choosing a new airport destination. The research shows that airports are more focused on passenger satisfaction, resulting in airport performance indicators that have the passenger at its operational core and performance targets (e.g. Airport Service Quality passenger satisfaction survey). IT plays an important role in increasing airport performance through the automation of processes such as the deployment of common-use check-in desks and self-service check-in kiosks. Studies of other industries have shown evidence that IT impacts firm performance, but there have been few studies related to the airport industry. Thus, the aim of this research is to assess the relationship between IT and airport performance, and it proposes a conceptual framework to assess the relationship between IT and airport performance by drawing from studies in other industries. Two methodologies were used in this research, the first one was the case study, and the second one was the online survey. The case studies consisted of 16 faceto- face interviews with senior staff representing two airports in Asia, one airport in Australia, and one airport in Europe. The case studies result show that there is a relationship between IT and airport performance ... [cont.]

    The assessment of the relationship between information technology (IT) and airport performance

    Get PDF
    The evolution of the airport business is demonstrated by airports that are adopting new business strategies and commercial models, which allow them to be, for example, service providers instead of real-estate managers, with the focus on cost reduction and increasing non-aeronautical (commercial) revenues. Information technology (IT) can be used by airports to achieve their business goals, such as enhancing performance by delivering cost reductions and generating additional revenue streams. Airports operate in an increasingly competitive and dynamic market, with the aim of attracting a larger share of hub traffic from neighbouring airports. Therefore, financial and operational performance will be key elements for airlines when choosing a new airport destination. The research shows that airports are more focused on passenger satisfaction, resulting in airport performance indicators that have the passenger at its operational core and performance targets (e.g. Airport Service Quality passenger satisfaction survey). IT plays an important role in increasing airport performance through the automation of processes such as the deployment of common-use check-in desks and self-service check-in kiosks. Studies of other industries have shown evidence that IT impacts firm performance, but there have been few studies related to the airport industry. Thus, the aim of this research is to assess the relationship between IT and airport performance, and it proposes a conceptual framework to assess the relationship between IT and airport performance by drawing from studies in other industries. Two methodologies were used in this research, the first one was the case study, and the second one was the online survey. The case studies consisted of 16 faceto- face interviews with senior staff representing two airports in Asia, one airport in Australia, and one airport in Europe. The case studies result show that there is a relationship between IT and airport performance ... [cont.]

    Mobile Business as Strategic Tools in the US Airline Industry

    Get PDF
    This thesis analyzes opportunities and threats of mobile business in the context of the US airline industry as s strategic tool to create a sustainable competitive advantage through the implementation of an effective mobile business model. The analysis is based on the assumption that mobile airline strategies have to create a strategic fit with the business environment seen from an airline perspective. Forces inherent in the global environment as well as in the micro-environment are analyzed using environmental scanning as systematic technique. Exploratory data obtained from a focus group interview is added to the analysis in order to assess opportunities and threats and to extract the key success factors for airline m-business, which is found to have tremendous impact on the way an airline creates value to its customers. Key success factors discussed in this thesis are user experience, the value contribution of mobile technology, and customer requirements. Crucial elements found for matching these factors are to expedite and facilitate processes, the ability to integrate systems into a mobile infrastructure, and using devices that yield quick and inexpensive results
    • 

    corecore