38,048 research outputs found

    FORGE: An eLearning Framework for Remote Laboratory Experimentation on FIRE Testbed Infrastructure

    Get PDF
    The Forging Online Education through FIRE (FORGE) initiative provides educators and learners in higher education with access to world-class FIRE testbed infrastructure. FORGE supports experimentally driven research in an eLearning environment by complementing traditional classroom and online courses with interactive remote laboratory experiments. The project has achieved its objectives by defining and implementing a framework called FORGEBox. This framework offers the methodology, environment, tools and resources to support the creation of HTML-based online educational material capable accessing virtualized and physical FIRE testbed infrastruc- ture easily. FORGEBox also captures valuable quantitative and qualitative learning analytic information using questionnaires and Learning Analytics that can help optimise and support student learning. To date, FORGE has produced courses covering a wide range of networking and communication domains. These are freely available from FORGEBox.eu and have resulted in over 24,000 experiments undertaken by more than 1,800 students across 10 countries worldwide. This work has shown that the use of remote high- performance testbed facilities for hands-on remote experimentation can have a valuable impact on the learning experience for both educators and learners. Additionally, certain challenges in developing FIRE-based courseware have been identified, which has led to a set of recommendations in order to support the use of FIRE facilities for teaching and learning purposes

    Machining feature-based system for supporting step-compliant milling process

    Get PDF
    STEP standards aims at setting up a standard description method for product data and providing a neutral exchanging mechanism that is independent of all the information processing systems for product information model. STEP Part 21 is the first implementation method from EXPRESS language and implemented successfully in CAD data. However, this text file consists of purely geometrical and topological data is hardly to be applied in machining process planning which requires machining features enriched data. The aim of this research is developing a new methodology to translate the EXPRESS language model of CAD STEP data into a new product data representation and enriched in machining features which is more beneficial to machining process planning. In this research, a target Database Management System (DBMS) was proposed for developing this system by using its fourth-generation tools that allow rapid development of applications through the provision of nonprocedural query language, reports generators, form generators, graphics generators, and application generators. The use of fourth-generation tools can improve productivity significantly and produce program that are easier to maintain. From this research, a new product data representation in a compact new table format is generated. Then this new product data representation has gone through a series of data enrichment process, such as normal face direction generation, edge convexity/concavity determination and machining features with transition feature recognition. Lastly, this new enriched product data representation is verified by generating to a new STEP standard data format which is according to ISO1030-224 standard format and providing an important part of solution for supporting STEP-compliant process planning and applications in milling process

    Assessing the participatory design of a project-based course on computer network applications

    Get PDF
    New teaching methodologies which foster student involvement, such as project-based learning, are nowadays part of the study curriculum of many engineering schools. Project-based learning courses, however, often build upon other previously taught technical courses, where the technical content for the project to be developed is studied. That type of course design focuses on building the transversal capabilities of students, and the technical challenges of the project are the mean to acquire these non-technical skills. In this paper, we present and assess a project-based course on computer network applications of a computer science school, which has been designed to improve within the same course both the transversal and technical skills of the students. The proposition of interest is that the course not only aims to train the students’ transversal skills by a group work project, but also to practise new technical topics and technologies. We argue that the key element of the proposed course design is that each student project group defines with the instructor the project they would like to develop in the course. We present first the design of the course and then an assessment with questionnaires, which were conducted over two semesters with the students enrolled in the course. The obtained results indicate that the students achieved both technical and transversal skills, while the instructors need to be flexible to adapt to diverse technical topics of the proposed projects.Peer ReviewedPostprint (published version

    A Case for an Online Educational Administrator Practicum Experience

    Get PDF
    The principal and superintendent practicum experiences have traditionally been entirely face-to-face (f2f) between university professors, interns and site mentors – typically a campus or district administrator (Figure 1). Advancements in technology combined with the exponential growth of online graduate programs give rise to additional incorporation of technology into the practicum experience

    An Experimental Nexos Laboratory Using Virtual Xinu

    Get PDF
    The Nexos Project is a joint effort between Marquette University, the University of Buffalo, and the University of Mississippi to build curriculum materials and a supporting experimental laboratory for hands-on projects in computer systems courses. The approach focuses on inexpensive, flexible, commodity embedded hardware, freely available development and debugging tools, and a fresh implementation of a classic operating system, Embedded Xinu, that is ideal for student exploration. This paper describes an extension to the Nexos laboratory that includes a new target platform composed of Qemu virtual machines. Virtual Xinu addresses two challenges that limit the effectiveness of Nexos. First, potential faculty adopters have clearly indicated that even with the current minimal monetary cost of installation, the hardware modifications, and time investment remain troublesome factors that scare off interested educators. Second, overcoming the inherent complications that arise due to the shared subnet that result in students\u27 projects interfering with each other in ways that are difficult to recreate, debug, and understand. Specifically, this paper discusses porting the Xinu operating systems to Qemu virtual hardware, developing the virtual networking platform, and results showing success using Virtual Xinu in the classroom during one semester of Operating Systems at the University of Mississippi
    • …
    corecore