32,977 research outputs found

    Puzzle games: a metaphor for computational thinking

    Get PDF

    Computational Thinking Integration into Middle Grades Science Classrooms: Strategies for Meeting the Challenges

    Get PDF
    This paper reports findings from the efforts of a university-based research team as they worked with middle school educators within formal school structures to infuse computer science principles and computational thinking practices. Despite the need to integrate these skills within regular classroom practices to allow all students the opportunity to learn these essential 21st Century skills, prior practice has been to offer these learning experiences outside of mainstream curricula where only a subset of students have access. We have sought to leverage elements of the research-practice partnership framework to achieve our project objectives of integrating computer science and computational thinking within middle science classrooms. Utilizing a qualitative approach to inquiry, we present narratives from three case schools, report on themes across work sites, and share recommendations to guide other practitioners and researchers who are looking to engage in technology-related initiatives to impact the lives of middle grades students

    A Pedagogy for Original Synners

    Get PDF
    Part of the Volume on Digital Young, Innovation, and the UnexpectedThis essay begins by speculating about the learning environment of the class of 2020. It takes place entirely in a virtual world, populated by simulated avatars, managed through the pedagogy of gaming. Based on this projected version of a future-now-in-formation, the authors consider the implications of the current paradigm shift that is happening at the edges of institutions of higher education. From the development of programs in multimedia literacy to the focus on the creation of hybrid learning spaces (that combine the use of virtual worlds, social networking applications, and classroom activities), the scene of learning as well as the subjects of education are changing. The figure of the Original Synner is a projection of the student-of-the-future whose foundational literacy is grounded in their ability to synthesize information from multiple information streams

    Designing Engaging Learning Experiences in Programming

    Get PDF
    In this paper we describe work to investigate the creation of engaging programming learning experiences. Background research informed the design of four fieldwork studies to explore how programming tasks could be framed to motivate learners. Our empirical findings from these four field studies are summarized here, with a particular focus upon one – Whack a Mole – which compared the use of a physical interface with the use of a screen-based equivalent interface to obtain insights into what made for an engaging learning experience. Emotions reported by two sets of participant undergraduate students were analyzed, identifying the links between the emotions experienced during programming and their origin. Evidence was collected of the very positive emotions experienced by learners programming with a physical interface (Arduino) in comparison with a similar program developed using a screen-based equivalent interface. A follow-up study provided further evidence of the motivation of personalized design of programming tangible physical artefacts. Collating all the evidence led to the design of a set of ‘Learning Dimensions’ which may provide educators with insights to support key design decisions for the creation of engaging programming learning experiences

    For a learnable mathematics in the digital cultures

    Get PDF
    I begin with some general remarks concerning the co-evolution of representational forms and mathematical meanings. I then discuss the changed roles of mathematics and novel representations that emerge from the ubiquity of computational models, and briefly consider the implications for learning mathematics. I contend that a central component of knowledge required in modern societies involves the development of a meta-epistemological stance – i.e. developing a sense of mechanism for the models that underpin social and professional discourses. I illustrate this point in relation to recent research in which I am investigating the mathematical epistemology of engineering practice. Finally, I map out one implication for the design of future mathematical learning environments with reference to some data from the "Playground Project"

    A Pilot Study of the Safety and Usability of the Obsidian Blockchain Programming Language

    Get PDF

    Introductory programming: a systematic literature review

    Get PDF
    As computing becomes a mainstream discipline embedded in the school curriculum and acts as an enabler for an increasing range of academic disciplines in higher education, the literature on introductory programming is growing. Although there have been several reviews that focus on specific aspects of introductory programming, there has been no broad overview of the literature exploring recent trends across the breadth of introductory programming. This paper is the report of an ITiCSE working group that conducted a systematic review in order to gain an overview of the introductory programming literature. Partitioning the literature into papers addressing the student, teaching, the curriculum, and assessment, we explore trends, highlight advances in knowledge over the past 15 years, and indicate possible directions for future research

    Decoding learning: the proof, promise and potential of digital education

    Get PDF
    With hundreds of millions of pounds spent on digital technology for education every year – from interactive whiteboards to the rise of one–to–one tablet computers – every new technology seems to offer unlimited promise to learning. many sectors have benefitted immensely from harnessing innovative uses of technology. cloud computing, mobile communications and internet applications have changed the way manufacturing, finance, business services, the media and retailers operate. But key questions remain in education: has the range of technologies helped improve learners’ experiences and the standards they achieve? or is this investment just languishing as kit in the cupboard? and what more can decision makers, schools, teachers, parents and the technology industry do to ensure the full potential of innovative technology is exploited? There is no doubt that digital technologies have had a profound impact upon the management of learning. institutions can now recruit, register, monitor, and report on students with a new economy, efficiency, and (sometimes) creativity. yet, evidence of digital technologies producing real transformation in learning and teaching remains elusive. The education sector has invested heavily in digital technology; but this investment has not yet resulted in the radical improvements to learning experiences and educational attainment. in 2011, the Review of Education Capital found that maintained schools spent £487 million on icT equipment and services in 2009-2010. 1 since then, the education system has entered a state of flux with changes to the curriculum, shifts in funding, and increasing school autonomy. While ring-fenced funding for icT equipment and services has since ceased, a survey of 1,317 schools in July 2012 by the british educational suppliers association found they were assigning an increasing amount of their budget to technology. With greater freedom and enthusiasm towards technology in education, schools and teachers have become more discerning and are beginning to demand more evidence to justify their spending and strategies. This is both a challenge and an opportunity as it puts schools in greater charge of their spending and use of technolog
    • 

    corecore