874 research outputs found

    Hybrid Spectrum Sharing in mmWave Cellular Networks

    Full text link
    While spectrum at millimeter wave (mmWave) frequencies is less scarce than at traditional frequencies below 6 GHz, still it is not unlimited, in particular if we consider the requirements from other services using the same band and the need to license mmWave bands to multiple mobile operators. Therefore, an efficient spectrum access scheme is critical to harvest the maximum benefit from emerging mmWave technologies. In this paper, we introduce a new hybrid spectrum access scheme for mmWave networks, where data is aggregated through two mmWave carriers with different characteristics. In particular, we consider the case of a hybrid spectrum scheme between a mmWave band with exclusive access and a mmWave band where spectrum is pooled between multiple operators. To the best of our knowledge, this is the first study proposing hybrid spectrum access for mmWave networks and providing a quantitative assessment of its benefits. Our results show that this approach provides major advantages with respect to traditional fully licensed or fully unlicensed spectrum access schemes, though further work is needed to achieve a more complete understanding of both technical and non technical implications

    Radio Co-location Aware Channel Assignments for Interference Mitigation in Wireless Mesh Networks

    Full text link
    Designing high performance channel assignment schemes to harness the potential of multi-radio multi-channel deployments in wireless mesh networks (WMNs) is an active research domain. A pragmatic channel assignment approach strives to maximize network capacity by restraining the endemic interference and mitigating its adverse impact on network performance. Interference prevalent in WMNs is multi-faceted, radio co-location interference (RCI) being a crucial aspect that is seldom addressed in research endeavors. In this effort, we propose a set of intelligent channel assignment algorithms, which focus primarily on alleviating the RCI. These graph theoretic schemes are structurally inspired by the spatio-statistical characteristics of interference. We present the theoretical design foundations for each of the proposed algorithms, and demonstrate their potential to significantly enhance network capacity in comparison to some well-known existing schemes. We also demonstrate the adverse impact of radio co- location interference on the network, and the efficacy of the proposed schemes in successfully mitigating it. The experimental results to validate the proposed theoretical notions were obtained by running an exhaustive set of ns-3 simulations in IEEE 802.11g/n environments.Comment: Accepted @ ICACCI-201

    A Socio-inspired CALM Approach to Channel Assignment Performance Prediction and WMN Capacity Estimation

    Full text link
    A significant amount of research literature is dedicated to interference mitigation in Wireless Mesh Networks (WMNs), with a special emphasis on designing channel allocation (CA) schemes which alleviate the impact of interference on WMN performance. But having countless CA schemes at one's disposal makes the task of choosing a suitable CA for a given WMN extremely tedious and time consuming. In this work, we propose a new interference estimation and CA performance prediction algorithm called CALM, which is inspired by social theory. We borrow the sociological idea of a "sui generis" social reality, and apply it to WMNs with significant success. To achieve this, we devise a novel Sociological Idea Borrowing Mechanism that facilitates easy operationalization of sociological concepts in other domains. Further, we formulate a heuristic Mixed Integer Programming (MIP) model called NETCAP which makes use of link quality estimates generated by CALM to offer a reliable framework for network capacity prediction. We demonstrate the efficacy of CALM by evaluating its theoretical estimates against experimental data obtained through exhaustive simulations on ns-3 802.11g environment, for a comprehensive CA test-set of forty CA schemes. We compare CALM with three existing interference estimation metrics, and demonstrate that it is consistently more reliable. CALM boasts of accuracy of over 90% in performance testing, and in stress testing too it achieves an accuracy of 88%, while the accuracy of other metrics drops to under 75%. It reduces errors in CA performance prediction by as much as 75% when compared to other metrics. Finally, we validate the expected network capacity estimates generated by NETCAP, and show that they are quite accurate, deviating by as low as 6.4% on an average when compared to experimentally recorded results in performance testing

    A bipartite graph based proportional fair scheduling strategy to improve throughput with multiple resource blocks

    Get PDF
    The fifth-generation wireless communication is expected to provide a huge amount of capacity to cater to the need of an increasing number of mobile consumers, which can be satisfied by device-to-device (D2D) communication. Reusing the cellular user’s resources in an efficient manner helps to increase the spectrum efficiency of the network but it leads to severe interference. The important point in reusing cellular user resources is that D2D communication should not affect the cellular user’s efficiency. After achieving this requirement, the focus is now turned toward the allocation of resources to D2D communication. This resource allocation strategy is to be designed in such a way that it will not affect communication among the cellular user (CU). This scheme improves various performance objectives. This paper aims at designing a proportional fair resource allocation algorithm based on the bipartite graph which maintains the quality of service (QoS) of CUs while providing D2D communication. This algorithm can be merged with any other scheme of resource allocation for improving QoS and adopting changing channels. In this scheme, a D2D pair can be allocated with one or more than one resource blocks. The MATLAB simulations analyze the performance of the proposed scheme

    Game Theory in Communications:a Study of Two Scenarios

    Get PDF
    Multi-user communication theory typically studies the fundamental limits of communication systems, and considers communication schemes that approach or even achieve these limits. The functioning of many such schemes assumes that users always cooperate, even when it is not in their own best interest. In practice, this assumption need not be fulfilled, as rational communication participants are often only interested in maximizing their own communication experience, and may behave in an undesirable manner from the system's point of view. Thus, communication systems may operate differently than intended if the behavior of individual participants is not taken into account. In this thesis, we study how users make decisions in wireless settings, by considering their preferences and how they interact with each other. We investigate whether the outcomes of their decisions are desirable, and, if not, what can be done to improve them. In particular, we focus on two related issues. The first is the decision-making of communication users in the absence of any central authority, which we consider in the context of the Gaussian multiple access channel. The second is the pricing of wireless resources, which we consider in the context of the competition of wireless service providers for users who are not contractually tied to any provider, but free to choose the one offering the best tradeoff of parameters. In the first part of the thesis, we model the interaction of self-interested users in a Gaussian multiple access channel using non-cooperative game theory. We demonstrate that the lack of infrastructure leads to an inefficient outcome for users who interact only once, specifically due to the lack of coordination between users. Using evolutionary game theory, we show that this inefficient outcome would also arise as a result of repeated interaction of many individuals over time. On the other hand, if the users correlate their decoding schedule with the outcome of some publicly observed (pseudo) random variable, the resulting outcome is efficient. This shows that sometimes it takes very little intervention on the part of the system planner to make sure that users choose a desirable operating point. In the second part of the thesis, we consider the competition of wireless service providers for users who are free to choose their service provider based on their channel parameters and the resource price. We model this situation as a two-stage game where the providers announce unit resource prices in the first stage and the users choose how much resource they want to purchase from each provider in the second stage. Under fairly general conditions, we show that the competitive interaction of users and providers results in socially optimal resource allocation. We also provide a decentralized primal-dual algorithm and prove its convergence to the socially optimal outcome

    Software Defined Applications in Cellular and Optical Networks

    Get PDF
    abstract: Small wireless cells have the potential to overcome bottlenecks in wireless access through the sharing of spectrum resources. A novel access backhaul network architecture based on a Smart Gateway (Sm-GW) between the small cell base stations, e.g., LTE eNBs, and the conventional backhaul gateways, e.g., LTE Servicing/Packet Gateways (S/P-GWs) has been introduced to address the bottleneck. The Sm-GW flexibly schedules uplink transmissions for the eNBs. Based on software defined networking (SDN) a management mechanism that allows multiple operator to flexibly inter-operate via multiple Sm-GWs with a multitude of small cells has been proposed. This dissertation also comprehensively survey the studies that examine the SDN paradigm in optical networks. Along with the PHY functional split improvements, the performance of Distributed Converged Cable Access Platform (DCCAP) in the cable architectures especially for the Remote-PHY and Remote-MACPHY nodes has been evaluated. In the PHY functional split, in addition to the re-use of infrastructure with a common FFT module for multiple technologies, a novel cross functional split interaction to cache the repetitive QAM symbols across time at the remote node to reduce the transmission rate requirement of the fronthaul link has been proposed.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201
    corecore