5,044 research outputs found

    Low Power Processor Architectures and Contemporary Techniques for Power Optimization – A Review

    Get PDF
    The technological evolution has increased the number of transistors for a given die area significantly and increased the switching speed from few MHz to GHz range. Such inversely proportional decline in size and boost in performance consequently demands shrinking of supply voltage and effective power dissipation in chips with millions of transistors. This has triggered substantial amount of research in power reduction techniques into almost every aspect of the chip and particularly the processor cores contained in the chip. This paper presents an overview of techniques for achieving the power efficiency mainly at the processor core level but also visits related domains such as buses and memories. There are various processor parameters and features such as supply voltage, clock frequency, cache and pipelining which can be optimized to reduce the power consumption of the processor. This paper discusses various ways in which these parameters can be optimized. Also, emerging power efficient processor architectures are overviewed and research activities are discussed which should help reader identify how these factors in a processor contribute to power consumption. Some of these concepts have been already established whereas others are still active research areas. © 2009 ACADEMY PUBLISHER

    AMC: Advanced Multi-accelerator Controller

    Get PDF
    The rapid advancement, use of diverse architectural features and introduction of High Level Synthesis (HLS) tools in FPGA technology have enhanced the capacity of data-level parallelism on a chip. A generic FPGA based HLS multi-accelerator system requires a microprocessor (master core) that manages memory and schedules accelerators. In a real environment, such HLS multi-accelerator systems do not give a perfect performance due to memory bandwidth issues. Thus, a system demands a memory manager and a scheduler that improves performance by managing and scheduling the multi-accelerator’s memory access patterns efficiently. In this article, we propose the integration of an intelligent memory system and efficient scheduler in the HLS-based multi-accelerator environment called Advanced Multi-accelerator Controller (AMC). The AMC system is evaluated with memory intensive accelerators, High Performance Computing (HPC) applications and implemented and tested on a Xilinx Virtex-5 ML505 evaluation FPGA board. The performance of the system is compared against the microprocessor-based systems that have been integrated with the operating system. Results show that the AMC based HLS multi-accelerator system achieves 10.4x and 7x of speedup compared to the MicroBlaze and Intel Core based HLS multi-accelerator systems.Peer ReviewedPostprint (author’s final draft

    AMMC: advance multi-core memory controller

    Get PDF
    In this work, we propose an efficient scheduler and intelligent memory manager known as AMMC (Advanced Multi-Core Memory Controller), which proficiently handles data movement and computational tasks. The proposed AMMC system improves performance by managing complex data transfers at run-time and scheduling multi-cores without the intervention of a control processor nor an operating system. AMMC has been coupled with a heterogeneous system that provides both general-purpose cores and application specific accelerators. The AMMC system is implemented and tested on a Xilinx ML505 evaluation FPGA board. The performance of the system is compared with a microprocessor based system that has been integrated with the Xilkernel operating system. Results show that the AMMC based multi-core system consumes 48% less hardware resources, 27.9% less on-chip power and achieves 6.8x of speed-up compared to the MicroBlaze-based multi-core system.Peer ReviewedPostprint (author’s final draft

    Microcontroller-based multiple-input multiple-output transmitter systems

    Get PDF
    Multiple-Input Multiple_output (MIMO) Systems use multiple antennas at both the transmitter and receiver to increase data throughput and/or system reliability. An MIMO transmitter can be implemented using a variety of approaches. This work describes some of the approaches that can be used to generate the transmitted waveforms, and discuss the features and limitation of each. In particular, it shows haw a microcontroller-based system can be used for applications which require low power consumption. This thesis also describes the high-level design of a microcontroller-based MIMO transmitter. The computational speed of the microcontroller, as compared to Field-programmable Gate Array (FPGA) and Digital Signal Processors (DSP), coupled with other additional tasks which it may need to handle limit the transmitted data-rate. However, this low power and low cost design may make it attractive for some applications --Abstract, page iii

    From FPGA to ASIC: A RISC-V processor experience

    Get PDF
    This work document a correct design flow using these tools in the Lagarto RISC- V Processor and the RTL design considerations that must be taken into account, to move from a design for FPGA to design for ASIC

    An Implementation of a Dual-Processor System on FPGA

    Full text link
    In recent years, Field-Programmable Gate Arrays (FPGA) have evolved rapidly paving the way for a whole new range of computing paradigms. On the other hand, computer applications are evolving. There is a rising demand for a system that is general-purpose and yet has the processing abilities to accommodate current trends in application processing. This work proposes a design and implementation of a tightly-coupled FPGA-based dual-processor platform. We architect a platform that optimizes the utilization of FPGA resources and allows for the investigation of practical implementation issues such as cache design. The performance of the proposed prototype is then evaluated, as different configurations of a uniprocessor and a dual-processor system are studied and compared against each other and against published results for common industry-standard CPU platforms. The proposed implementation utilizes the Nios II 32-bit embedded soft-core processor architecture designed for the Altera Cyclone III family of FPGAs
    • …
    corecore