4,967 research outputs found

    The AXIOM software layers

    Get PDF
    AXIOM project aims at developing a heterogeneous computing board (SMP-FPGA).The Software Layers developed at the AXIOM project are explained.OmpSs provides an easy way to execute heterogeneous codes in multiple cores. People and objects will soon share the same digital network for information exchange in a world named as the age of the cyber-physical systems. The general expectation is that people and systems will interact in real-time. This poses pressure onto systems design to support increasing demands on computational power, while keeping a low power envelop. Additionally, modular scaling and easy programmability are also important to ensure these systems to become widespread. The whole set of expectations impose scientific and technological challenges that need to be properly addressed.The AXIOM project (Agile, eXtensible, fast I/O Module) will research new hardware/software architectures for cyber-physical systems to meet such expectations. The technical approach aims at solving fundamental problems to enable easy programmability of heterogeneous multi-core multi-board systems. AXIOM proposes the use of the task-based OmpSs programming model, leveraging low-level communication interfaces provided by the hardware. Modular scalability will be possible thanks to a fast interconnect embedded into each module. To this aim, an innovative ARM and FPGA-based board will be designed, with enhanced capabilities for interfacing with the physical world. Its effectiveness will be demonstrated with key scenarios such as Smart Video-Surveillance and Smart Living/Home (domotics).Peer ReviewedPostprint (author's final draft

    Soft-error resilient on-chip memory structures

    Get PDF
    Soft errors induced by energetic particle strikes in on-chip memory structures, such as L1 data/instruction caches and register files, have become an increasing challenge in designing new generation reliable microprocessors. Due to their transient/random nature, soft errors cannot be captured by traditional verification and testing process due to the irrelevancy to the correctness of the logic. This dissertation is thus focusing on the reliability characterization and cost-effective reliable design of on-chip memories against soft errors. Due to various performance, area/size, and energy constraints in various target systems, many existing unoptimized protection schemes on cache memories may eventually prove significantly inadequate and ineffective. This work develops new lifetime models for data and tag arrays residing in both the data and instruction caches. These models facilitate the characterization of cache vulnerability of the stored items at various lifetime phases. The design methodology is further exemplified by the proposed reliability schemes targeting at specific vulnerable phases. Benchmarking is carried out to showcase the effectiveness of these approaches. The tag array demands high reliability against soft errors while the data array is fully protected in on-chip caches, because of its crucial importance to the correctness of cache accesses. Exploiting the address locality of memory accesses, this work proposes a Tag Replication Buffer (TRB) to protect information integrity of the tag array in the data cache with low performance, energy and area overheads. To provide a comprehensive evaluation of the tag array reliability, this work also proposes a refined evaluation metric, detected-without-replica-TVF (DOR-TVF), which combines the TVF and access-with-replica (AWR) analysis. Based on the DOR-TVF analysis, a TRB scheme with early write-back (TRB-EWB) is proposed, which achieves a zero DOR-TVF at a negligible performance overhead. Recent research, as well as the proposed optimization schemes in this cache vulnerability study, have focused on the design of cost-effective reliable data caches in terms of performance, energy, and area overheads based on the assumption of fixed error rates. However, for systems in operating environments that vary with time or location, those schemes will be either insufficient or over-designed for the changing error rates. This work explores the design of a self-adaptive reliable data cache that dynamically adapts its employed reliability schemes to the changing operating environments in order to maintain a target reliability. The experimental evaluation shows that the self-adaptive data cache achieves similar reliability to a cache protected by the most reliable scheme, while simultaneously minimizing the performance and power overheads. Besides the data/instruction caches, protecting the register file and its data buses is crucial to reliable computing in high-performance microprocessors. Since the register file is in the critical path of the processor pipeline, any reliable design that increases either the pressure on the register file or the register file access latency is not desirable. This work proposes to exploit narrow-width register values, which represent the majority of generated values, for making the duplicates within the same register data item. A detailed architectural vulnerability factor (AVF) analysis shows that this in-register duplication (IRD) scheme significantly reduces the AVF in the register file compared to the conventional design. The experimental evaluation also shows that IRD provides superior read-with-duplicate (RWD) and error detection/recovery rates under heavy error injection as compared to previous reliability schemes, while only incurring a small power overhead. By integrating the proposed reliable designs in data/instruction caches and register files, the vulnerability of the entire microprocessor is dramatically reduced. The new lifetime model, the self-adaptive design and the narrow-width value duplication scheme proposed in this work can also provide guidance to architects toward highly efficient reliable system design

    Microprocessors: the engines of the digital age

    Get PDF
    The microprocessor—a computer central processing unit integrated onto a single microchip—has come to dominate computing across all of its scales from the tiniest consumer appliance to the largest supercomputer. This dominance has taken decades to achieve, but an irresistible logic made the ultimate outcome inevitable. The objectives of this Perspective paper are to offer a brief history of the development of the microprocessor and to answer questions such as: where did the microprocessor come from, where is it now, and where might it go in the future

    The Progress of Computing

    Get PDF
    The present study analyzes computer performance over the last century and a half. Three results stand out. First, there has been a phenomenal increase in computer power over the twentieth century. Performance in constant dollars or in terms of labor units has improved since 1900 by a factor in the order of 1 trillion to 5 trillion, which represent compound growth rates of over 30 percent per year for a century. Second, there were relatively small improvements in efficiency (perhaps a factor of ten) in the century before World War II. Around World War II, however, there was a substantial acceleration in productivity, and the growth in computer power from 1940 to 2001 has averaged 55 percent per year. Third, this study develops estimates of the growth in computer power relying on performance rather than on input-based measures typically used by official statistical agencies. The price declines using performance-based measures are markedly higher than those reported in the official statistics.Productivity, hedonic pricing, history of computing

    Hardware-software co-design of an iris recognition algorithm

    Get PDF
    This paper describes the implementation of an iris recognition algorithm based on hardware-software co-design. The system architecture consists of a general-purpose 32- bit microprocessor and several slave coprocessors that accelerate the most intensive calculations. The whole iris recognition algorithm has been implemented on a low-cost Spartan 3 FPGA, achieving significant reduction in execution time when compared to a conventional software-based application. Experimental results show that with a clock speed of 40 MHz, an IrisCode is obtained in less than 523 ms from an image of 640x480 pixels, which is just 20% of the total time needed by a software solution running on the same microprocessor embedded in the architecture.Peer ReviewedPreprin

    From FPGA to ASIC: A RISC-V processor experience

    Get PDF
    This work document a correct design flow using these tools in the Lagarto RISC- V Processor and the RTL design considerations that must be taken into account, to move from a design for FPGA to design for ASIC

    Increase the Quality of Life through the Development of Automation

    Get PDF
    This paper discusses needs for the automation of the underdevelopment communities. The novelty of this research is the link between production of microprocessors and increasing of the life quality. This study highlights the importance of efficient and economic architecture of logical circuits for the automation.  The aim of this research is to produce a logical circuit, which includes suitable gates. The circuit will be embedded in the automatic devices as a microprocessor to cause programmed functions. This research reports analytically a workshop method to build the circuit. It uses an assembly card and required gates.  Then, it suggests certain VHDL codes to drive a motor.  The workshop presents the configuration schemes and connection board for every gate. In addition, it shows a schematic wiring diagram of the circuit. Finally, the economic analysis proves the mass production of the circuit will enhance the automation and consequently the quality of life. The outcome of this research is a helpful experience to the engineers, manufacturers and students of the relevant disciplines to resolve the inequality in the use of the modern technologies. 

    A Novel PUF-Based Encryption Protocol for Embedded System On Chip

    Get PDF
    This paper presents a novel security mechanism for sensitive data stored, acquired or processed by a complex electronic circuit implemented as System-on-Chip (SoC) on an FPGA reconfigurable device. Such circuits are increasingly used in embedded or cyber systems employed in civil and military applications. Managing security in the overarching SoC presents a challenge as part of the process of securing such systems. The proposed new method is based on encrypted and authenticated communications between the microprocessor cores, FPGA fabric and peripherals inside the SoC. The encryption resides in a key generated with Physically Unclonable Function (PUF) circuits and a pseudorandom generator. The conceptual design of the security circuit was validated through hardware implementation, testing and analysis of results
    corecore