207 research outputs found

    SCALING UP TASK EXECUTION ON RESOURCE-CONSTRAINED SYSTEMS

    Get PDF
    The ubiquity of executing machine learning tasks on embedded systems with constrained resources has made efficient execution of neural networks on these systems under the CPU, memory, and energy constraints increasingly important. Different from high-end computing systems where resources are abundant and reliable, resource-constrained systems only have limited computational capability, limited memory, and limited energy supply. This dissertation focuses on how to take full advantage of the limited resources of these systems in order to improve task execution efficiency from different aspects of the execution pipeline. While the existing literature primarily aims at solving the problem by shrinking the model size according to the resource constraints, this dissertation aims to improve the execution efficiency for a given set of tasks from the following two aspects. Firstly, we propose SmartON, which is the first batteryless active event detection system that considers both the event arrival pattern as well as the harvested energy to determine when the system should wake up and what the duty cycle should be. Secondly, we propose Antler, which exploits the affinity between all pairs of tasks in a multitask inference system to construct a compact graph representation of the task set for a given overall size budget. To achieve the aforementioned algorithmic proposals, we propose the following hardware solutions. One is a controllable capacitor array that can expand the system’s energy storage on-the-fly. The other is a FRAM array that can accommodate multiple neural networks running on one system.Doctor of Philosoph

    A Contribution Towards Intelligent Autonomous Sensors Based on Perovskite Solar Cells and Ta2O5/ZnO Thin Film Transistors

    Get PDF
    Many broad applications in the field of robotics, brain-machine interfaces, cognitive computing, image and speech processing and wearables require edge devices with very constrained power and hardware requirements that are challenging to realize. This is because these applications require sub-conscious awareness and require to be always “on”, especially when integrated with a sensor node that detects an event in the environment. Present day edge intelligent devices are typically based on hybrid CMOS-memristor arrays that have been so far designed for fast switching, typically in the range of nanoseconds, low energy consumption (typically in nano-Joules), high density and endurance (exceeding 1015 cycles). On the other hand, sensory-processing systems that have the same time constants and dynamics as their input signals, are best placed to learn or extract information from them. To meet this requirement, many applications are implemented using external “delay” in the memristor, in a process which enables each synapse to be modeled as a combination of a temporal delay and a spatial weight parameter. This thesis demonstrates a synaptic thin film transistor capable of inherent logic functions as well as compute-in-memory on similar time scales as biological events. Even beyond a conventional crossbar array architecture, we have relied on new concepts in reservoir computing to demonstrate a delay system reservoir with the highest learning efficiency of 95% reported to date, in comparison to equivalent two terminal memristors, using a single device for the task of image processing. The crux of our findings relied on enhancing our capability to model the unique physics of the device, in the scope of the current thesis, that is not amenable to conventional TCAD simulations. The model provides new insight into the redox characteristics of the gate current and paves way for assessment of device performance in compute-in-memory applications. The diffusion-based mechanism of the device, effectively enables time constants that have potential in applications such as gesture recognition and detection of cardiac arrythmia. The thesis also reports a new orientation of a solution processed perovskite solar cell with an efficiency of 14.9% that is easily integrable into an intelligent sensor node. We examine the influence of the growth orientation on film morphology and solar cell efficiency. Collectively, our work aids the development of more energy-efficient, powerful edge-computing sensor systems for upcoming applications of the IOT

    Architecture and Advanced Electronics Pathways Toward Highly Adaptive Energy- Efficient Computing

    Get PDF
    With the explosion of the number of compute nodes, the bottleneck of future computing systems lies in the network architecture connecting the nodes. Addressing the bottleneck requires replacing current backplane-based network topologies. We propose to revolutionize computing electronics by realizing embedded optical waveguides for onboard networking and wireless chip-to-chip links at 200-GHz carrier frequency connecting neighboring boards in a rack. The control of novel rate-adaptive optical and mm-wave transceivers needs tight interlinking with the system software for runtime resource management

    Dynamic Nanophotonic Structures Leveraging Chalcogenide Phase-Change Materials

    Get PDF
    Chip-scale nanophotonic devices have the potential to enable next-generation imaging, computing, communication, and engineered quantum systems with very stringent performance requirements on size, power, integrability, stability, and bandwidth. The emergence of meta-optic devices with deep subwavelength features has enabled the formation of ultra-thin flat optical structures to replace bulky conventional counterparts in free-space applications. Nevertheless, progress in meta-optics has been slowed due to the passive nature of existing devices and the urgent need for a reliable, fast, low-power, and robust reconfiguration mechanism. In this research, I devised a new material and device platform to resolve this challenge. Through detailed theoretical design, nanofabrication, and experimental demonstration, I demonstrated the unique features of my proposed platform as an essential building block of truly scalable adaptive flat optics for the active manipulation of optical wavefronts. One of the key attributes of this research is the integration of CMOS-compatible materials for the fabrication of passive devices with phase-change materials that provide the largest known modulation of the index of refraction upon stimulation with an optical or electrical signal. A unique selection of phase-change materials for operation in the near-infrared and visible wavelengths has been made, followed by developing the optimum deposition and fabrication processes for the realization of nanophotonics devices that integrate these functional materials with semiconductor and plasmonic materials. A major breakthrough in this process was the design and realization of integrated electrical stimulation circuitry with far better performance compared to existing solutions. Using this platform, I experimentally demonstrated the first electrically tunable meta-optic structure for fast optical switching with a high contrast ratio and dynamic wavefront scanning with a large steering angle. This is a major achievement as it essentially allows the engineering of a desired optical wavefront with fast reconfigurability at low power consumption. In an independent work, I demonstrated, for the first time, a nonvolatile meta-optic structure for high-resolution, wide-gamut, and high-contrast microdisplays with added polarization controllability and the possibility of implementation on a flexible substrate. Further features of this metaphotonic display include: 1) full addressability at the microscale pixel via fast electrical pulses; 2) super-resolution pixels with controllable brightness and contrast; and 3) a wide range of colors with high saturation and purity. Lastly, for the first time, I realized a hybrid photonic-plasmonic meta-optic platform with active control over the spatial, spectral, and temporal properties of an optical wavefront. This is a major achievement as it essentially allows the engineering of a desired optical wavefront with fast reconfigurability at low power consumption. These demonstrations are now being pursued in different directions for novel systems for imaging, sensing, computing, and quantum applications, just to name a few.Ph.D

    Low Power Memory/Memristor Devices and Systems

    Get PDF
    This reprint focusses on achieving low-power computation using memristive devices. The topic was designed as a convenient reference point: it contains a mix of techniques starting from the fundamental manufacturing of memristive devices all the way to applications such as physically unclonable functions, and also covers perspectives on, e.g., in-memory computing, which is inextricably linked with emerging memory devices such as memristors. Finally, the reprint contains a few articles representing how other communities (from typical CMOS design to photonics) are fighting on their own fronts in the quest towards low-power computation, as a comparison with the memristor literature. We hope that readers will enjoy discovering the articles within

    Approximate hardening techniques for digital signal processing circuits against radiation-induced faults

    Get PDF
    RESUMEN NO TÉCNICO. Se llama radiación al proceso por el cual una partícula o una onda es capaz de transmitir energía a través del espacio o un medio material. Si la energía transmitida es suficientemente alta, la radiación puede provocar que algunos electrones se desplacen de su posición, en un proceso llamado ionización. La radiación ionizante puede provocar problemas a los seres vivos, pero también a los diversos materiales que componen los sistemas eléctricos y electrónicos utilizados en entornos sujetos a radiación. Existen en La Tierra varios procesos que emiten radiación ionizante, como la obtención de energía en centrales nucleares o ciertos procedimientos médicos. Sin embargo, las fuentes de radiación más importantes se sitúan más allá de nuestra atmósfera y afectan fundamentalmente a sistemas aeroespaciales y vuelos de gran altitud. Debido a la radiación, los sistemas electrónicos que se exponen a cualquiera de estas fuentes sufren degradación en sus propiedades a lo largo del tiempo y pueden sufrir fallos catastróficos que acorten su vida útil. El envejecimiento de los componentes se produce por acumulación de carga eléctrica en el material, lo que se conoce como Dosis Ionizante Total (TID por sus siglas en inglés), o por distorsiones en el silicio sobre el que se fabrican los circuitos, lo que se conoce como Daño por Desplazamiento (DD). Una única partícula ionizante puede, sin embargo, provocar también diversos tipos de fallos transitorios o permanentes en los componentes de un circuito, generalmente por un cambio de estado en un elemento de memoria o fallos destructivos en un transistor. Los diferentes tipos de fallos producidos en circuitos por la acción de una única partícula ionizante se engloban en la categoría de Efectos de Evento Único (SEE por sus siglas en inglés). Para proteger los sistemas electrónicos frente a los efectos de la radiación se suele recurrir a un conjunto de técnicas que llamamos endurecimiento frente a radiación. Los procedimientos tradicionales de endurecimiento han consistido en la fabricación de componentes electrónicos mediante procesos especiales que les confieran una resistencia inherente frente a la TID, el DD y los SEE. A este conjunto de técnicas de endurecimiento se lo conoce como Endurecimiento frente a la Radiación Por Proceso (RHBP por sus siglas en inglés). Estos procedimientos suelen aumentar el coste de los componentes y empeorar su rendimiento con respecto a los componentes que usamos en nuestros sistemas electrónicos cotidianos. En oposición a las técnicas RHBP encontramos las técnicas de Endurecimiento frente a la Radiación Por Diseño (RHBD por sus siglas en inglés). Estas técnicas permiten detectar y tratar de corregir fallos producidos por la radiación introduciendo modificaciones en los circuitos. Estas modificaciones suelen aumentar la complejidad de los circuitos que se quiere endurecer, haciendo que consuman más energía, ocupen más espacio o funcionen a menor frecuencia, pero estas desventajas se pueden compensar con la disminución de los costes de fabricación y la mejora en las prestaciones que aportan los sistemas modernos. En un intento por reducir el coste de las misiones espaciales y mejorar sus capacidades, en los últimos años se trata de introducir un mayor número de Componentes Comerciales (COTS por sus siglas en inglés), endurecidos mediante técnicas RHBD. Las técnicas RHBD habituales se basan en la adición de elementos redundantes idénticos al original, cuyos resultados se pueden comparar entre sí para obtener información acerca de la existencia de un error (si sólo se usa un circuito redundante, Duplicación Con Comparación [DWC]) o llegar incluso a corregir un error detectado de manera automática, si se emplean dos o más réplicas redundantes, siendo el caso más habitual la Redundancia Modular Triple (TMR) en todas sus variantes. El trabajo desarrollado en esta Tesis gira en torno a las técnicas de endurecimiento RHBD de sistemas electrónicos comerciales. En concreto, se trata de proponer y caracterizar nuevas técnicas de endurecimiento que permitan reducir el alto consumo de recursos de las utilizadas habitualmente. Para ello, se han desarrollado técnicas de endurecimiento que aprovechan cálculos aproximados para detectar y corregir fallos en circuitos electrónicos digitales para procesamiento de señal implementados en FPGA comerciales, dispositivos que permiten implementar circuitos electrónicos digitales a medida y reconfigurarlos tantas veces como se quiera. A lo largo de esta Tesis se han desarrollado diferentes circuitos de prueba endurecidos mediante TMR y se ha comparado su rendimiento con los de otras técnicas de Redundancia Aproximada, en concreto la Redundancia de Precisión Reducida (RPR), la Redundancia de Resolución Reducida (RRR) y la Redundancia Optimizada para Algoritmos Compuestos (ORCA): • La Redundancia de Precisión Reducida se basa en la utilización de dos réplicas redundantes que calculan resultados con un menor número de bits que el circuito original. De este modo se pueden disminuir los recursos necesitados por el circuito, aunque las correcciones en caso de fallo son menos precisas que en el TMR. En este trabajo exploramos también la RPR Escalada como un método de obtener un balance óptimo entre la precisión y el consumo de recursos. • La Redundancia de Resolución Reducida es una técnica propuesta originalmente en esta tesis. Está pensada para algoritmos que trabajan con información en forma de paquetes cuyos datos individuales guardan alguna relación entre sí. Las réplicas redundantes calculan los resultados con una fracción de los datos de entrada originales, lo que reduce su tamaño y permite correcciones aproximadas en caso de fallo. • La Redundancia Optimizada para Algoritmos Compuestos es también una aportación original de esta tesis. Está indicada para algoritmos cuyo resultado final puede expresarse como la composición de resultados intermedios calculados en etapas anteriores. Las réplicas redundantes se forman como bloques que calculan resultados intermedios y el resultado de su composición se puede comparar con el resultado original. Este método permite reducir recursos y proporciona resultados de corrección exactos en la mayor parte de los casos, lo que supone una mejora importante con respecto a las correcciones de los métodos anteriores. La eficacia de las técnicas de endurecimiento desarrolladas se ha probado mediante experimentos de inyección de fallos y mediante ensayos en instalaciones de aceleradores de partículas preparadas para la irradiación de dispositivos electrónicos. En concreto, se han realizado ensayos de radiación con protones en el Centro Nacional de Aceleradores (CNA España), el Paul Scherrer Institut (PSI, Suiza) y ensayos de radiación con neutrones en el laboratorio ISIS Neutron and Muon Source (ChipIR, Reino Unido).RESUMEN TÉCNICO. Se llama radiación al proceso por el cual una partícula o una onda es capaz de transmitir energía a través del espacio o un medio material. Si la energía transmitida es suficientemente alta, la radiación puede provocar que algunos electrones se desplacen de su posición, en un proceso llamado ionización. La radiación ionizante puede provocar problemas a los seres vivos, pero también a los diversos materiales que componen los sistemas eléctricos y electrónicos utilizados en entornos sujetos a radiación. Existen en La Tierra varios procesos que emiten radiación ionizante, como la obtención de energía en centrales nucleares o ciertos procedimientos médicos. Sin embargo, las fuentes de radiación más importantes se sitúan más allá de nuestra atmósfera y afectan fundamentalmente a sistemas aeroespaciales y vuelos de gran altitud. Debido a la radiación, los sistemas electrónicos que se exponen a cualquiera de estas fuentes sufren degradación en sus propiedades a lo largo del tiempo y pueden sufrir fallos catastróficos que acorten su vida útil. El envejecimiento de los componentes se produce por acumulación de carga eléctrica en el material, lo que se conoce como Dosis Ionizante Total (TID, Total Ionizing Dose), o por distorsiones acumuladas en la matriz cristalina del silicio en el que se fabrican los circuitos, lo que se conoce como Daño por Desplazamiento (DD, Displacement Damage). Una única partícula ionizante puede, sin embargo, provocar también diversos tipos de fallos transitorios o permanentes en los componentes de un circuito, generalmente por un cambio de estado en un elemento de memoria o la activación de circuitos parasitarios en un transistor. Los diferentes tipos de fallos producidos en circuitos por la acción de una única partícula ionizante se engloban en la categoría de Efectos de Evento Único (SEE, Single Event Effects). Para proteger los sistemas electrónicos frente a los efectos de la radiación se suele recurrir a un conjunto de técnicas que llamamos endurecimiento frente a radiación. Los procedimientos tradicionales de endurecimiento han consistido en la fabricación de componentes electrónicos mediante procesos especiales que les confieran una resistencia inherente frente a la TID, el DD y los SEE. A este conjunto de técnicas de endurecimiento se lo conoce como Endurecimiento frente a la Radiación Por Proceso (RHBP, por sus siglas en inglés). Estos procedimientos suelen aumentar el coste de los componentes y empeorar su rendimiento con respecto a los componentes que usamos en nuestros sistemas electrónicos cotidianos. En oposición a las técnicas RHBP encontramos las técnicas de Endurecimiento frente a la Radiación Por Diseño (RHBD, por sus siglas en inglés). Estas técnicas permiten detectar y tratar de corregir fallos producidos por la radiación introduciendo modificaciones en los circuitos. Estas modificaciones suelen aumentar la complejidad de los circuitos que se quiere endurecer, haciendo que consuman más energía, ocupen más espacio o funcionen a menor frecuencia, pero estas desventajas se pueden compensar con la disminución de los costes de fabricación y la mejora en las prestaciones que aportan los sistemas modernos. En un intento por reducir el coste de las misiones espaciales y mejorar sus capacidades, en los últimos años se trata de introducir un mayor número de Componentes Comerciales (COTS, por sus siglas en inglés), endurecidos mediante técnicas RHBD. Las técnicas RHBD habituales se basan en la adición de elementos redundantes idénticos al original, cuyos resultados se pueden comparar entre sí para obtener información acerca de la existencia de un error (si sólo se usa un circuito redundante, Duplicación Con Comparación [DWC, Duplication With Comparison]) o llegar incluso a corregir un error detectado de manera automática, si se emplean dos o más réplicas redundantes, siendo el caso más habitual la Redundancia Modular Triple (TMR, Triple Modular Redundancy) en todas sus variantes. El trabajo desarrollado en esta Tesis gira en torno a las técnicas de endurecimiento RHBD de sistemas electrónicos comerciales. En concreto, se trata de proponer y caracterizar nuevas técnicas de endurecimiento que permitan reducir el alto consumo de recursos de las técnicas utilizadas habitualmente. Para ello, se han desarrollado técnicas de endurecimiento que aprovechan cálculos aproximados para detectar y corregir fallos en circuitos electrónicos digitales para procesamiento de señal implementados en FPGA (Field Programmable Gate Array) comerciales. Las FPGA son dispositivos que permiten implementar circuitos electrónicos digitales diseñados a medida y reconfigurarlos tantas veces como se quiera. Su capacidad de reconfiguración y sus altas prestaciones las convierten en dispositivos muy interesantes para aplicaciones espaciales, donde realizar cambios en los diseños no suele ser posible una vez comenzada la misión. La reconfigurabilidad de las FPGA permite corregir en remoto posibles problemas en el diseño, pero también añadir o modificar funcionalidades a los circuitos implementados en el sistema. La eficacia de las técnicas de endurecimiento desarrolladas e implementadas en FPGAs se ha probado mediante experimentos de inyección de fallos y mediante ensayos en instalaciones de aceleradores de partículas preparadas para la irradiación de dispositivos electrónicos. Los ensayos de radiación son el estándar industrial para probar el comportamiento de todos los sistemas electrónicos que se envían a una misión espacial. Con estos ensayos se trata de emular de manera acelerada las condiciones de radiación a las que se verán sometidos los sistemas una vez hayan sido lanzados y determinar su resistencia a TID, DD y/o SEEs. Dependiendo del efecto que se quiera observar, las partículas elegidas para la radiación varían, pudiendo elegirse entre electrones, neutrones, protones, iones pesados, fotones... Particularmente, los ensayos de radiación realizados en este trabajo, tratándose de un estudio de técnicas de endurecimiento para sistemas electrónicos digitales, están destinados a establecer la sensibilidad de los circuitos estudiados frente a un tipo de SEE conocido como Single Event Upset (SEU), en el que la radiación modifica el valor lógico de un elemento de memoria. Para ello, hemos recurrido a experimentos de radiación con protones en el Centro Nacional de Aceleradores (CNA, España), el Paul Scherrer Institut (PSI, Suiza) y experimentos de radiación con neutrones en el laboratorio ISIS Neutron and Muon Source (ChipIR, Reino Unido). La sensibilidad de un circuito suele medirse en términos de su sección eficaz (cross section) con respecto a una partícula determinada, calculada como el cociente entre el número de fallos encontrados y el número de partículas ionizantes por unidad de área utilizadas en la campaña de radiación. Esta métrica sirve para estimar el número de fallos que provocará la radiación a lo largo de la vida útil del sistema, pero también para establecer comparaciones que permitan conocer la eficacia de los sistemas de endurecimiento implementados y ayudar a mejorarlos. El método de inyección de fallos utilizado en esta Tesis como complemento a la radiación se basa en modificar el valor lógico de los datos almacenados en la memoria de configuración de la FPGA. En esta memoria se guarda la descripción del funcionamiento del circuito implementado en la FPGA, por lo que modificar sus valores equivale a modificar el circuito. En FPGAs que utilizan la tecnología SRAM en sus memorias de configuración, como las utilizadas en esta Tesis, este es el componente más sensible a la radiación, por lo que es posible comparar los resultados de la inyección de fallos y de las campañas de radiación. Análogamente a la sección eficaz, en experimentos de inyección de fallos podemos hablar de la tasa de error, calculada como el cociente entre el número de fallos encontrados y la cantidad de bits de memoria inyectados. A lo largo de esta Tesis se han desarrollado diferentes circuitos endurecidos mediante Redundancia Modular Triple y se ha comparado su rendimiento con los de otras técnicas de Redundancia Aproximada, en concreto la Redundancia de Precisión Reducida (RPR), la Redundancia de Resolución Reducida (RRR) y la Redundancia Optimizada para Algoritmos Compuestos (ORCA). Estas dos últimas son contribuciones originales presentadas en esta Tesis. • La Redundancia de Precisión Reducida se basa en la utilización de dos réplicas redundantes que calculan resultados con un menor número de bits que el circuito original. Para cada dato de salida se comparan el resultado del circuito original y los dos resultados de precisión reducida. Si los dos resultados de precisión reducida son idénticos y su diferencia con el resultado de precisión completa es mayor que un determinado valor umbral, se considera que existe un fallo en el circuito original y se utiliza el resultado de precisión reducida para corregirlo. En cualquier otro caso, el resultado original se considera correcto, aunque pueda contener errores tolerables por debajo del umbral de comparación. En comparación con un circuito endurecido con TMR, los diseños RPR utilizan menos recursos, debido a la reducción en la precisión de los cálculos de los circuitos redundantes. No obstante, esto también afecta a la calidad de los resultados obtenidos cuando se corrige un error. En este trabajo exploramos también la RPR Escalada como un método de obtener un balance óptimo entre la precisión y el consumo de recursos. En esta variante de la técnica RPR, los resultados de cada etapa de cálculo en los circuitos redundantes tienen una precisión diferente, incrementándose hacia las últimas etapas, en las que el resultado tiene la misma precisión que el circuito original. Con este método se logra incrementar la calidad de los datos corregidos a la vez que se reducen los recursos utilizados por el endurecimiento. Los resultados de las campañas de radiación y de inyección de fallos realizadas sobre los diseños endurecidos con RPR sugieren que la reducción de recursos no sólo es beneficiosa por sí misma en términos de recursos y energía utilizados por el sistema, sino que también conlleva una reducción de la sensibilidad de los circuitos, medida tanto en cross section como en tasa de error. • La Redundancia de Resolución Reducida es una técnica propuesta originalmente en esta tesis. Está indicada para algoritmos que trabajan con información en forma de paquetes cuyos datos individuales guardan alguna relación entre sí, como puede ser un algoritmo de procesamiento de imágenes. En la técnica RRR, se añaden dos circuitos redundantes que calculan los resultados con una fracción de los datos de entrada originales. Tras el cálculo, los resultados diezmados pueden interpolarse para obtener un resultado aproximado del mismo tamaño que el resultado del circuito original. Una vez interpolados, los resultados de los tres circuitos pueden ser comparados para detectar y corregir fallos de una manera similar a la que se utiliza en la técnica RPR. Aprovechando las características del diseño hardware, la disminución de la cantidad de datos que procesan los circuitos de Resolución Reducida puede traducirse en una disminución de recursos, en lugar de una disminución de tiempo de cálculo. De esta manera, la técnica RRR es capaz de reducir el consumo de recursos en comparación a los que se necesitarían si se utilizase un endurecimiento TMR. Los resultados de los experimentos realizados en diseños endurecidos mediante Redundancia de Resolución Reducida sugieren que la técnica es eficaz en reducir los recursos utilizados y, al igual que pasaba en el caso de la Redundancia de Precisión Reducida, también su sensibilidad se ve reducida, comparada con la sensibilidad del mismo circuito endurecido con Redundancia Modular Triple. Además, se observa una reducción notable de la sensibilidad de los circuitos frente a errores no corregibles, comparado con el mismo resultado en TMR y RPR. Este tipo de error engloba aquellos producidos por fallos en la lógica de comparación y votación o aquellos en los que un único SEU produce fallos en los resultados de dos o más de los circuitos redundantes al mismo tiempo, lo que se conoce como Fallo en Modo Común (CMF). No obstante, también se observa que la calidad de las correcciones realizadas utilizando este método empeora ligeramente. • La Redundancia Optimizada para Algoritmos Compuestos es también una aportación original de esta tesis. Está indicada para algoritmos cuyo resultado final puede expresarse como la composición de resultados intermedios calculados en etapas anteriores. Para endurecer un circuito usando esta técnica, se añaden dos circuitos redundantes diferentes entre sí y que procesan cada uno una parte diferente del conjunto de datos de entrada. Cada uno de estos circuitos aproximados calcula un resultado intermedio. La composición de los dos resultados intermedios da un resultado idéntico al del circuito original en ausencia de fallos. La detección de fallos se realiza comparando el resultado del circuito original con el de la composición de los circuitos aproximados. En caso de ser diferentes, se puede determinar el origen del fallo comparando los resultados aproximados intermedios frente a un umbral. Si la diferencia entre los resultados intermedios supera el umbral, significa que el fallo se ha producido en uno de los circuitos aproximados y que el resultado de la composición no debe ser utilizado en la salida. Al igual que ocurre en la Redundancia de Precisión Reducida y la Redundancia de Resolución Reducida, utilizar un umbral de comparación implica la existencia de errores tolerables. No obstante, esta técnica de endurecimiento permite realizar correcciones exactas, en lugar de aproximadas, en la mayor parte de los casos, lo que mejora la calidad de los resultados con respecto a otras técnicas de endurecimiento aproximadas, al tiempo que reduce los recursos utilizados por el sistema endurecido en comparación con las técnicas tradicionales. Los resultados de los experimentos realizados con diseños endurecidos mediante Redundancia Optimizada para Algoritmos Compuestos confirman que esta técnica de endurecimiento es capaz de producir correcciones exactas en un alto porcentaje de los eventos. Su sensibilidad frente a todo tipo de errores y frente a errores no corregibles también se ve disminuida, comparada con la obtenida con Redundancia Modular Triple. Los resultados presentados en esta Tesis respaldan la idea de que las técnicas de Redundancia Aproximada son alternativas viables a las técnicas de endurecimiento frente a la radiación habituales, siempre que

    Antennas and Electromagnetics Research via Natural Language Processing.

    Get PDF
    Advanced techniques for performing natural language processing (NLP) are being utilised to devise a pioneering methodology for collecting and analysing data derived from scientific literature. Despite significant advancements in automated database generation and analysis within the domains of material chemistry and physics, the implementation of NLP techniques in the realms of metamaterial discovery, antenna design, and wireless communications remains at its early stages. This thesis proposes several novel approaches to advance research in material science. Firstly, an NLP method has been developed to automatically extract keywords from large-scale unstructured texts in the area of metamaterial research. This enables the uncovering of trends and relationships between keywords, facilitating the establishment of future research directions. Additionally, a trained neural network model based on the encoder-decoder Long Short-Term Memory (LSTM) architecture has been developed to predict future research directions and provide insights into the influence of metamaterials research. This model lays the groundwork for developing a research roadmap of metamaterials. Furthermore, a novel weighting system has been designed to evaluate article attributes in antenna and propagation research, enabling more accurate assessments of impact of each scientific publication. This approach goes beyond conventional numeric metrics to produce more meaningful predictions. Secondly, a framework has been proposed to leverage text summarisation, one of the primary NLP tasks, to enhance the quality of scientific reviews. It has been applied to review recent development of antennas and propagation for body-centric wireless communications, and the validation has been made available for comparison with well-referenced datasets for text summarisation. Lastly, the effectiveness of automated database building in the domain of tunable materials and their properties has been presented. The collected database will use as an input for training a surrogate machine learning model in an iterative active learning cycle. This model will be utilised to facilitate high-throughput material processing, with the ultimate goal of discovering novel materials exhibiting high tunability. The approaches proposed in this thesis will help to accelerate the discovery of new materials and enhance their applications in antennas, which has the potential to transform electromagnetic material research

    Resistive switching in ferroelectric polycrystalline Yttrium Manganese Oxide thin films

    Get PDF
    A memristor is a two-terminal device which exhibits a hysteresis loop in the current-voltage characteristics. Resistive switching refers to reversible non-volatile change in state of the resistance. There exists a wide range of materials which show resistive switching i.e, phase change materials are used in today’s technology which are a main component of the resistive random access memory. In actual research, mostly metal oxides are investigated regarding their resistive switching which is based on migration of anions and cations. Additionally, in hexagonal manganites, h-RMnO3 (R = Y, In, Sc, Ho,...,Lu), the multiferroic properties and nano-sized conducting domain walls introduce further interesting aspects in this material class which may contribute to additional features in resistive switching. This dissertation investigates the resistive switching in yttrium manganite thin film (Y1Mn1O3, Y0.95Mn1.05O3, Y1Mn0.99Ti0.01O3 and Y0.94Mn1.05Ti0.01O3) based metal-insulator-metal structures with different top electrodes (Au or Al) and bottom electrodes (Pt or Pt/Ti or Pt/Cr) in 2-point DC probe measurements. Yttrium manganite thin films have been deposited by pulsed laser deposition on metal coated SiO2/Si substrates. Electrical characterization of yttrium manganite thin films in a metal-insulator-metal structure exhibit electroforming-free unipolar resistive switching. High voltages and currents are required for SET (V_ ) and RESET (I_ ), respectively. The observed resistive switching is assigned to the formation (low resistance state) and rupture (high resistance state) of conductive, metallic-like filaments induced by a thermo-chemical phenomena. Observed unipolar RS is classified as the thermo-chemical memory (TCM) resistive switching phenomena related to the locally increased temperature. The stability of conductive filaments leads to good retention of the programmed states with large memory window (OFF to ON resistance in the order of 10^4 - 10^6, depends on electrodes, electrode size and composition of yttrium manganite thin films). The endurance or number of loading cycles of the resistive switching devices are improved and is in the order of 10^3 for Y1Mn1O3 and Y0.95Mn1.05O3 composition with Al-top electrodes and Pt-bottom electrode. The maximum number of loading cycles is observed for an applied negative bias, a preferential negative polarity for switching the yttrium manganite thin film devices with Au or Al top electrodes and Pt or Pt/Ti bottom electrodes. Whereas, yttrium manganite thin film devices with Pt/Cr-bottom electrode and Al-top electrodes a preferential positive bias is required for switching the devices. Temperature-dependent measurements of yttrium manganite thin films deposited on Pt/SiO2/Si show semiconducting and metallic-like conduction in high resistance state and low resistance state, respectively. The activation energy () extracted in the ohmic region for hopping of holes localized at Mn4+ is in the range of 0.36 eV - 0.43 eV. Scanning electron microscopy in secondary electron emission mode with an in-lens detector and a small acceleration voltage of 1.0 kV is used to characterize the ferroelectric charged domain network formation in polycrystalline hexagonal yttrium manganite thin film. The observed bright regions correspond to local polarization vector with upward polarization components (+P ) and dark regions to local polarization vector with downward polarization components (-P ). A dense domain network is observed for Mn-rich samples (Y0.95Mn1.05O3 and Y0.94Mn1.05Ti0.01O3) in comparison to Y1Mn1O3 and Y1Mn0.99Ti0.01O3 with smaller grains show isolated charged domains. The observed dependency of different compositions to the charged domain density network in yttrium manganite thin films may influenced by different factors: stoichiometry gradient, oxygen, dopant concentration and the resulting grain structure.Ein Memristor ist ein Bauelement, welches eine Hysterese beim Vermessen seiner IU-Kennlinie aufweist. Dieses als „Widerstandsschalten“ bezeichnete Phänomen beruht auf der nichtflüchtigen Veränderung des Widerstandes. Es existiert eine breite Auswahl an Materialien, welche Widerstandsschalten zeigen, z.B. sind Phasenwechselmaterialien die Hauptkomponenten in aktuellen RRAMs. Aktuelle werden hauptsächlich Metalloxide untersucht, welche durch Migration von Anionen und Kationen Widerstandsschalten hervorrufen. Weitere Materialien wie hexagonale Manganoxidverbindungen RMnO3 (R = Y, In, Sc, Ho,...,Lu), besitzen zusätzliche multiferroische Eigenschaften, bei denen geladene Domänengrenzen weitere interessante Aspekte in dieser Materialklasse einführen und das Widerstandsschalten beeinflussen können. Die vorliegende Dissertation untersucht das Widerstandsschalten in Yttriummanganoxid-Dünnfilmen mit unterschiedlichen Kompositionen und unterschiedlichen Elektrodenmaterialien. Y1Mn1O3, Y0.95Mn1.05O3, Y1Mn0.99Ti0.01O3 und Y0.94Mn1.05Ti0.01O3, wurden mittels gepulster Laserdeposition auf metallisierte Si/SiO2 Substrate abgeschieden. Die elektrische Charakterisierung von Yttriummanganoxid-Dünnfilmen in einer Metall-Isolator-Metall Sandwichstruktur weist auf elektroformierungsfreies, unipolares Widerstandsschalten hin. Das beobachtete Widerstandsschalten wird auf die Formierung (niederohmiger Zustand) und Zerstörung (hochohmiger Zustand) des leitfähigen, metallischen Filaments (geladenen Domänengrenzen oder auch Vortices), verursacht durch thermisch-chemische Vorgänge, zurückgeführt. Die geladenen Domänengrenzen und/oder Vortices in Yttriummanganoxid-Dünnfilmen beeinflussen unter Umständen als nanoskalige Objekte die Formierung der leitfähigen Filamente. Die Stabilität der leitfähigen Filamente führt zu einer guten Langzeitspeicherung der programmierten Zustände, welche auch ein sehr großes Speicherfenster (Widerstandsverhältnis zwischen Aus/An-Zustand von 10^5) aufweisen. Die großen Widerstandsverhältnisse sind z.B. für die Herstellung von Auswahlschaltern (selektoren) in Crossbar-Strukturen notwendig, um die möglicherweise auftretenden Kriechströme in Crossbar-Strukturen zu unterdrücken, welche sonst Lesefehler der adressierten Zellen hervorrufen würden. Die Wiederbeschreibbarkeit ist in der Größenordnung von ca. 10^3, abhängig von der chemischen Zusammensetzung des Yttriummanganoxide-Dünnfilmes und vom verwendeten Elektrodenmaterial. Resultate der Charakterisierung mittels Rasterelektronenmikroskopie im Sekundärelektronenmodus mit einer kleinen Beschleunigungsspannung von 1.0 kV weisen auf geladene ferroelektrische Domänen in polykristallinem hexagonalen YMnO3 Dünnfilmen hin. Deswegen muß der Einfluss von geladenen Domänengrenzen und multiferroischen Vortices auf das beobachtete Widerstandsschalten in hexagonalem YMnO3 berücksichtigt werden

    Design and Code Optimization for Systems with Next-generation Racetrack Memories

    Get PDF
    With the rise of computationally expensive application domains such as machine learning, genomics, and fluids simulation, the quest for performance and energy-efficient computing has gained unprecedented momentum. The significant increase in computing and memory devices in modern systems has resulted in an unsustainable surge in energy consumption, a substantial portion of which is attributed to the memory system. The scaling of conventional memory technologies and their suitability for the next-generation system is also questionable. This has led to the emergence and rise of nonvolatile memory ( NVM ) technologies. Today, in different development stages, several NVM technologies are competing for their rapid access to the market. Racetrack memory ( RTM ) is one such nonvolatile memory technology that promises SRAM -comparable latency, reduced energy consumption, and unprecedented density compared to other technologies. However, racetrack memory ( RTM ) is sequential in nature, i.e., data in an RTM cell needs to be shifted to an access port before it can be accessed. These shift operations incur performance and energy penalties. An ideal RTM , requiring at most one shift per access, can easily outperform SRAM . However, in the worst-cast shifting scenario, RTM can be an order of magnitude slower than SRAM . This thesis presents an overview of the RTM device physics, its evolution, strengths and challenges, and its application in the memory subsystem. We develop tools that allow the programmability and modeling of RTM -based systems. For shifts minimization, we propose a set of techniques including optimal, near-optimal, and evolutionary algorithms for efficient scalar and instruction placement in RTMs . For array accesses, we explore schedule and layout transformations that eliminate the longer overhead shifts in RTMs . We present an automatic compilation framework that analyzes static control flow programs and transforms the loop traversal order and memory layout to maximize accesses to consecutive RTM locations and minimize shifts. We develop a simulation framework called RTSim that models various RTM parameters and enables accurate architectural level simulation. Finally, to demonstrate the RTM potential in non-Von-Neumann in-memory computing paradigms, we exploit its device attributes to implement logic and arithmetic operations. As a concrete use-case, we implement an entire hyperdimensional computing framework in RTM to accelerate the language recognition problem. Our evaluation shows considerable performance and energy improvements compared to conventional Von-Neumann models and state-of-the-art accelerators

    Algorithm Optimization and Hardware Acceleration for Machine Learning Applications on Low-energy Systems

    Get PDF
    Machine learning (ML) has been extensively employed for strategy optimization, decision making, data classification, etc. While ML shows great triumph in its application field, the increasing complexity of the learning models introduces neoteric challenges to the ML system designs. On the one hand, the applications of ML on resource-restricted terminals, like mobile computing and IoT devices, are prevented by the high computational complexity and memory requirement. On the other hand, the massive parameter quantity for the modern ML models appends extra demands on the system\u27s I/O speed and memory size. This dissertation investigates feasible solutions for those challenges with software-hardware co-design
    corecore