1,589 research outputs found

    The AXIOM software layers

    Get PDF
    AXIOM project aims at developing a heterogeneous computing board (SMP-FPGA).The Software Layers developed at the AXIOM project are explained.OmpSs provides an easy way to execute heterogeneous codes in multiple cores. People and objects will soon share the same digital network for information exchange in a world named as the age of the cyber-physical systems. The general expectation is that people and systems will interact in real-time. This poses pressure onto systems design to support increasing demands on computational power, while keeping a low power envelop. Additionally, modular scaling and easy programmability are also important to ensure these systems to become widespread. The whole set of expectations impose scientific and technological challenges that need to be properly addressed.The AXIOM project (Agile, eXtensible, fast I/O Module) will research new hardware/software architectures for cyber-physical systems to meet such expectations. The technical approach aims at solving fundamental problems to enable easy programmability of heterogeneous multi-core multi-board systems. AXIOM proposes the use of the task-based OmpSs programming model, leveraging low-level communication interfaces provided by the hardware. Modular scalability will be possible thanks to a fast interconnect embedded into each module. To this aim, an innovative ARM and FPGA-based board will be designed, with enhanced capabilities for interfacing with the physical world. Its effectiveness will be demonstrated with key scenarios such as Smart Video-Surveillance and Smart Living/Home (domotics).Peer ReviewedPostprint (author's final draft

    An Implementation of a Dual-Processor System on FPGA

    Full text link
    In recent years, Field-Programmable Gate Arrays (FPGA) have evolved rapidly paving the way for a whole new range of computing paradigms. On the other hand, computer applications are evolving. There is a rising demand for a system that is general-purpose and yet has the processing abilities to accommodate current trends in application processing. This work proposes a design and implementation of a tightly-coupled FPGA-based dual-processor platform. We architect a platform that optimizes the utilization of FPGA resources and allows for the investigation of practical implementation issues such as cache design. The performance of the proposed prototype is then evaluated, as different configurations of a uniprocessor and a dual-processor system are studied and compared against each other and against published results for common industry-standard CPU platforms. The proposed implementation utilizes the Nios II 32-bit embedded soft-core processor architecture designed for the Altera Cyclone III family of FPGAs

    Slovenian Virtual Gallery on the Internet

    Get PDF
    The Slovenian Virtual Gallery (SVG) is a World Wide Web based multimedia collection of pictures, text, clickable-maps and video clips presenting Slovenian fine art from the gothic period up to the present days. Part of SVG is a virtual gallery space where pictures hang on the walls while another part is devoted to current exhibitions of selected Slovenian art galleries. The first version of this application was developed in the first half of 1995. It was based on a file system for storing all the data and custom developed software for search, automatic generation of HTML documents, scaling of pictures and remote management of the system. Due to the fast development of Web related tools a new version of SVG was developed in 1997 based on object-oriented relational database server technology. Both implementations are presented and compared in this article with issues related to the transion between the two versions. At the end, we will also discuss some extensions to SVG. We will present the GUI (Graphical User Interface) developed specially for presentation of current exhibitions over the Web which is based on GlobalView panoramic navigation extension to developed Internet Video Server (IVS). And since SVG operates with a lot of image data, we will confront with the problem of Image Content Retrieval

    Self-modifiable color petri nets for modeling user manipulation and network event handling

    Get PDF
    A Self-Modifiable Color Petri Net (SMCPN) which has multimedia synchronization capability and the ability to model user manipulation and network event (i.e. network congestion, etc.) handling is proposed in this paper. In SMCPN, there are two types of tokens: resource tokens representing resources to be presented and color tokens with two sub-types: one associated with some commands to modify the net mechanism in operation, another associated with a number to decide iteration times. Also introduced is a new type of resource token named reverse token that moves to the opposite direction of arcs. When user manipulation/network event occurs, color tokens associated with the corresponding interrupt handling commands will be injected into places that contain resource tokens. These commands are then executed to handle the user manipulation/network event. SMCPN has the desired general programmability in the following sense: 1) It allows handling of user manipulations or pre-specified events at any time while keeping the Petri net design simple and easy. 2) It allows the user to customize event handling beforehand. This means the system being modeled can handle not only commonly seen user interrupts (e.g. skip, reverse, freeze), the user is free to define new operations including network event handling. 3) It has the power to simulate self-modifying protocols. A simulator has been built to demonstrate the feasibility of SMCPN

    Design and analysis of a beacon-less routing protocol for large volume content dissemination in vehicular ad hoc networks

    Get PDF
    Largevolumecontentdisseminationispursuedbythegrowingnumberofhighquality applications for Vehicular Ad hoc NETworks(VANETs), e.g., the live road surveillance service and the video-based overtaking assistant service. For the highly dynamical vehicular network topology, beacon-less routing protocols have been proven to be efficient in achieving a balance between the system performance and the control overhead. However, to the authors’ best knowledge, the routing design for large volume content has not been well considered in the previous work, which will introduce new challenges, e.g., the enhanced connectivity requirement for a radio link. In this paper, a link Lifetime-aware Beacon-less Routing Protocol (LBRP) is designed for large volume content delivery in VANETs. Each vehicle makes the forwarding decision based on the message header information and its current state, including the speed and position information. A semi-Markov process analytical model is proposed to evaluate the expected delay in constructing one routing path for LBRP. Simulations show that the proposed LBRP scheme outperforms the traditional dissemination protocols in providing a low end-to-end delay. The analytical model is shown to exhibit a good match on the delay estimation with Monte Carlo simulations, as well

    The AXIOM platform for next-generation cyber physical systems

    Get PDF
    Cyber-Physical Systems (CPSs) are widely used in many applications that require interactions between humans and their physical environment. These systems usually integrate a set of hardware-software components for optimal application execution in terms of performance and energy consumption. The AXIOM project (Agile, eXtensible, fast I/O Module), presented in this paper, proposes a hardware-software platform for CPS coupled with an easy parallel programming model and sufficient connectivity so that the performance can scale-up by adding multiple boards. AXIOM supports a task-based programming model based on OmpSs and leverages a high-speed, inexpensive communication interface called AXIOM-Link. The board also tightly couples the CPU with reconfigurable resources to accelerate portions of the applications. As case studies, AXIOM uses smart video surveillance, and smart home living applicationsThis work is partially supported by the European Union H2020 program through the AXIOM project (grant ICT-01-2014 GA 645496) and HiPEAC (GA 687698), by the Spanish Government through Programa Severo Ochoa (SEV-2015-0493), by the Spanish Ministry of Science and Technology through TIN2015-65316-P project, and by the Generalitat de Catalunya (contracts 2014-SGR-1051 and 2014-SGR-1272). We also thank the Xilinx University Program for its hardware and software donations.Peer ReviewedPostprint (author's final draft

    A Power-Efficient Methodology for Mapping Applications on Multi-Processor System-on-Chip Architectures

    Get PDF
    This work introduces an application mapping methodology and case study for multi-processor on-chip architectures. Starting from the description of an application in standard sequential code (e.g. in C), first the application is profiled, parallelized when possible, then its components are moved to hardware implementation when necessary to satisfy performance and power constraints. After mapping, with the use of hardware objects to handle concurrency, the application power consumption can be further optimized by a task-based scheduler for the remaining software part, without the need for operating system support. The key contributions of this work are: a methodology for high-level hardware/software partitioning that allows the designer to use the same code for both hardware and software models for simulation, providing nevertheless preliminary estimations for timing and power consumption; and a task-based scheduling algorithm that does not require operating system support. The methodology has been applied to the co-exploration of an industrial case study: an MPEG4 VGA real-time encoder

    MAGDA: A Mobile Agent based Grid Architecture

    Get PDF
    Mobile agents mean both a technology and a programming paradigm. They allow for a flexible approach which can alleviate a number of issues present in distributed and Grid-based systems, by means of features such as migration, cloning, messaging and other provided mechanisms. In this paper we describe an architecture (MAGDA – Mobile Agent based Grid Architecture) we have designed and we are currently developing to support programming and execution of mobile agent based application upon Grid systems
    corecore