4,639 research outputs found

    Human-centred design methods : developing scenarios for robot assisted play informed by user panels and field trials

    Get PDF
    Original article can be found at: http://www.sciencedirect.com/ Copyright ElsevierThis article describes the user-centred development of play scenarios for robot assisted play, as part of the multidisciplinary IROMEC1 project that develops a novel robotic toy for children with special needs. The project investigates how robotic toys can become social mediators, encouraging children with special needs to discover a range of play styles, from solitary to collaborative play (with peers, carers/teachers, parents, etc.). This article explains the developmental process of constructing relevant play scenarios for children with different special needs. Results are presented from consultation with panel of experts (therapists, teachers, parents) who advised on the play needs for the various target user groups and who helped investigate how robotic toys could be used as a play tool to assist in the children’s development. Examples from experimental investigations are provided which have informed the development of scenarios throughout the design process. We conclude by pointing out the potential benefit of this work to a variety of research projects and applications involving human–robot interactions.Peer reviewe

    Designing Modular Robotic Playware

    Get PDF
    In this paper, we explore the design of modular robotic objects that may enhance playful experiences. The approach builds upon the development of modular robotics to create a kind of playware, which is flexible in both set-up and activity building for the end-user to allow easy creation of games. Key features of this design approach are modularity, flexibility, and construction, immediate feedback to stimulate engagement, activity design by end-users, and creative exploration of play activities. These features permit the use of such modular playware by a vast array of users, including disabled children who often could be prevented from using and taking benefits from modern technologies. The objective is to get any children moving, exchanging, experimenting and having fun, regardless of their cognitive or physical ability levels. The paper describes two prototype systems developed as modular robotic tiles, and discusses the challenges and opportunities of this modular playware when used by children with different cognitive abilities

    Cognitive and neuromuscular robotic rehabilitation framework

    Get PDF
    © Springer International Publishing AG 2017.This paper presents a cognitive and neuromuscular robotic rehabilitation framework to support enhanced control of arm movement for humans with muscular control impairment, typically with some level of memory deficiency due to, for example, suffering from a stroke. It describes the design, development and integration of the framework architecture as well as a Baxter robot based demonstration platform. Three key elements of the proposed framework (rehabilitation module, workspace and rehabilitation scenarios) have been described in detail. In the rehabilitation sessions, the users and the robot are asked to work together to place cubes so as to form a predefined shape. The robot and the user hold the same object in order to move it to a particular destination according to a rehabilitation scenario. If the robot detects a force from the user directed in the wrong direction during the navigation then it resists and corrects the movement in order to assist the user towards the right direction. The assistive support scenarios were designed to evaluate the achieved enhancement of precision, efficiency and dexterity of arm movements. The proposed rehabilitation framework provides a modular, automated and open-source platform for researchers and practitioners in neuromuscular rehabilitation applications

    REHAP Balance Tiles: A modular system supporting balance rehabilitation

    Full text link
    © 2015 ICST. This paper describes the design, development, implementation and user evaluation of an interactive modular tile system, aimed to support balance rehabilitation of patients recovering from a stroke. The REHAP Balance Tiles system is an innovative tool, which has been developed in close collaboration with therapists and patients in stroke units of health rehabilitation institutes in Sydney, Australia and Eindhoven, the Netherlands. The system was designed to allow therapists to tailor exercises for each patient by changing the physical configuration of tiles. We report a user evaluation in a rehabilitation clinic, which lasted five weeks. Results indicate that the tiles can fulfill their envisioned purpose. They are received well by therapists, meeting requirements for ease of use, motivational feedback, modularity and flexibility

    Overcoming barriers and increasing independence: service robots for elderly and disabled people

    Get PDF
    This paper discusses the potential for service robots to overcome barriers and increase independence of elderly and disabled people. It includes a brief overview of the existing uses of service robots by disabled and elderly people and advances in technology which will make new uses possible and provides suggestions for some of these new applications. The paper also considers the design and other conditions to be met for user acceptance. It also discusses the complementarity of assistive service robots and personal assistance and considers the types of applications and users for which service robots are and are not suitable

    Universal Balance?

    Get PDF
    In the ActivAbles and STARR projects we are developing interactive training tools for stroke survivors. As our initial user studies pointed to balance being a key ability, one of the developed tools is an interactive balance mat. While balance equipment is common, interactive balancing equipment for persons with poor balance is less common. Equipment exists for persons with good balance (eg. Wii), but most games and exercises are less suited for many stroke survivors. The development process has been done in close collaboration with stroke survivors. We have used both creative workshops and individual iterative testing in the development, and have currently a prototype that is being tested in the home of 12 stroke survivors. This prototype is based on a foam mat which incorporates pressure sensing, and which allows you to see the pressure distribution as you exercise, but also allows you to play music or play different games. The feedback is designed to be inclusive - designs are multimodal (visual and auditory), and the setup is flexible and can easily be adapted. Initial test results show that the overall design is promising and works well (is robust, motivating and used). Problems identified are connected to the fact that we use main stream tablets for feedback, which adds complexity for the user both with interaction and charging. We are currently working on solving these problems, and expect to end up with a balance mat well suited for a wide range of users - not only stroke survivors

    Designing smart garments for rehabilitation

    Get PDF
    • …
    corecore