5,663 research outputs found

    Designing Interactive Manual Wheelchair Skills Training for Children

    Get PDF
    Access to wheelchair skills training is important for the mobility and independence of wheelchair users, but training rates are low - particularly among young people. In this paper, we present \textit{Geometry Wheels}, a movement-based experience prototype to explore the potential of interactive technology to support basic wheelchair skills training for manual wheelchair users, designed with the support of occupational therapists. Results of an evaluation with 15 participants (10 young wheelchair users and 5 parents) show that interactive systems can deliver engaging and challenging activities that encourage wheelchair navigation and activity. However, the project also revealed challenges in designing for individual differences in physical abilities, in conflicts between children's and parents' perceptions of ability, and barriers to home use. We outline strategies for the design of rehabilitative technology to help young people with disabilities build physical abilities

    Wheelchair-based game design for older adults

    Get PDF
    Few leisure activities are accessible to institutionalized older adults using wheelchairs; in consequence, they experience lower levels of perceived health than able-bodied peers. Video games have been shown to be an engaging leisure activity for older adults. In our work, we address the design of wheelchair-accessible motion-based games. We present KINECTWheels, a toolkit designed to integrate wheelchair movements into motion-based games, and Cupcake Heaven, a wheelchair-based video game designed for older adults using wheelchairs. Results of two studies show that KINECTWheels can be applied to make motion-based games wheelchair-accessible, and that wheelchair-based games engage older adults. Through the application of the wheelchair as an enabling technology in play, our work has the potential of encouraging older adults to develop a positive relationship with their wheelchair. Copyright 2013 ACM

    Designing wheelchair-based movement games

    Get PDF
    People using wheelchairs have access to fewer sports and other physically stimulating leisure activities than nondisabled persons, and often lead sedentary lifestyles that negatively influence their health. While motion- based video games have demonstrated great potential of encouraging physical activity among nondisabled players, the accessibility of motion-based games is limited for persons with mobility disabilities, thus also limiting access to the potential health benefits of playing these games. In our work, we address this issue through the design of wheelchair-accessible motion-based game controls. We present KINECTWheels, a toolkit designed to integrate wheelchair movements into motion-based games. Building on the toolkit, we developed Cupcake Heaven, a wheelchair-based video game designed for older adults using wheelchairs, and we created Wheelchair Revolution, a motion-based dance game that is accessible to both persons using wheelchairs and nondisabled players. Evaluation results show that KINECTWheels can be applied to make motion-based games wheelchair-accessible, and that wheelchair-based games engage broad audiences in physically stimulating play. Through the application of the wheelchair as an enabling technology in games, our work has the potential of encouraging players of all ages to develop a positive relationship with their wheelchair

    Exploring casual exergames with kids using wheelchairs

    Get PDF
    Physical activity (PA) is important for health and well-being, but often PA is inaccessible for children using wheelchairs. In this work, we explore the potential of casual exergames to provide opportunities for physically active play. We apply existing wheelchair-controlled video games to explore children’s and parents’ perceptions of these games. Feedback shows that children and parents feel that casual exergames could be a valuable opportunity of offering wheelchair-accessible play, however, refinement of game concepts particularly regarding challenge and physical effort required to play is necessary. By integrating these findings into games for young people using wheelchairs in the future, we hope to provide opportunities for accessible and physically challenging play

    Overcoming barriers and increasing independence: service robots for elderly and disabled people

    Get PDF
    This paper discusses the potential for service robots to overcome barriers and increase independence of elderly and disabled people. It includes a brief overview of the existing uses of service robots by disabled and elderly people and advances in technology which will make new uses possible and provides suggestions for some of these new applications. The paper also considers the design and other conditions to be met for user acceptance. It also discusses the complementarity of assistive service robots and personal assistance and considers the types of applications and users for which service robots are and are not suitable

    Include 2011 : The role of inclusive design in making social innovation happen.

    Get PDF
    Include is the biennial conference held at the RCA and hosted by the Helen Hamlyn Centre for Design. The event is directed by Jo-Anne Bichard and attracts an international delegation

    Human-centred design methods : developing scenarios for robot assisted play informed by user panels and field trials

    Get PDF
    Original article can be found at: http://www.sciencedirect.com/ Copyright ElsevierThis article describes the user-centred development of play scenarios for robot assisted play, as part of the multidisciplinary IROMEC1 project that develops a novel robotic toy for children with special needs. The project investigates how robotic toys can become social mediators, encouraging children with special needs to discover a range of play styles, from solitary to collaborative play (with peers, carers/teachers, parents, etc.). This article explains the developmental process of constructing relevant play scenarios for children with different special needs. Results are presented from consultation with panel of experts (therapists, teachers, parents) who advised on the play needs for the various target user groups and who helped investigate how robotic toys could be used as a play tool to assist in the children’s development. Examples from experimental investigations are provided which have informed the development of scenarios throughout the design process. We conclude by pointing out the potential benefit of this work to a variety of research projects and applications involving human–robot interactions.Peer reviewe

    How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers

    Get PDF
    Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program
    corecore