16,163 research outputs found

    This Far, No Further: Introducing Virtual Borders to Mobile Robots Using a Laser Pointer

    Full text link
    We address the problem of controlling the workspace of a 3-DoF mobile robot. In a human-robot shared space, robots should navigate in a human-acceptable way according to the users' demands. For this purpose, we employ virtual borders, that are non-physical borders, to allow a user the restriction of the robot's workspace. To this end, we propose an interaction method based on a laser pointer to intuitively define virtual borders. This interaction method uses a previously developed framework based on robot guidance to change the robot's navigational behavior. Furthermore, we extend this framework to increase the flexibility by considering different types of virtual borders, i.e. polygons and curves separating an area. We evaluated our method with 15 non-expert users concerning correctness, accuracy and teaching time. The experimental results revealed a high accuracy and linear teaching time with respect to the border length while correctly incorporating the borders into the robot's navigational map. Finally, our user study showed that non-expert users can employ our interaction method.Comment: Accepted at 2019 Third IEEE International Conference on Robotic Computing (IRC), supplementary video: https://youtu.be/lKsGp8xtyI

    Designing for the dichotomy of immersion in location based games

    Get PDF
    The interaction design of mixed reality location based games typically focuses upon the digital content of the mobile screen, as this is characteristically the primary navigational tool players use to traverse the game space. This emphasis on the digital over the physical means the opportunity for player immersion in mixed reality games is often limited to the single (digital) dimension. This research seeks to redress this imbalance, which is caused, in part, by the requirement for the player?s attention to be systematically switched between the two worlds, defined in this research as the ?Dichotomy of Immersion?. Using different design strategies we propose minimising the reliance of the player upon the mobile screen by encouraging greater observation of their physical surroundings. Using a ?research through design? approach for the mixed reality game PAC-LAN: Zombie Apocalypse, we illustrate design strategies for increasing immersion in location based games, which we believe will aid designers in enabling players to more readily engage with the physical context of the game and thus facilitate richer game experiences

    Location-based technologies for learning

    Get PDF
    Emerging technologies for learning report - Article exploring location based technologies and their potential for educatio

    Mobile Agents for Mobile Tourists: A User Evaluation of Gulliver's Genie

    Get PDF
    How mobile computing applications and services may be best designed, implemented and deployed remains the subject of much research. One alternative approach to developing software for mobile users that is receiving increasing attention from the research community is that of one based on intelligent agents. Recent advances in mobile computing technology have made such an approach feasible. We present an overview of the design and implementation of an archetypical mobile computing application, namely that of an electronic tourist guide. This guide is unique in that it comprises a suite of intelligent agents that conform to the strong intentional stance. However, the focus of this paper is primarily concerned with the results of detailed user evaluations conducted on this system. Within the literature, comprehensive evaluations of mobile context-sensitive systems are sparse and therefore, this paper seeks, in part, to address this deficiency

    Service-oriented Context-aware Framework

    Get PDF
    Location- and context-aware services are emerging technologies in mobile and desktop environments, however, most of them are difficult to use and do not seem to be beneficial enough. Our research focuses on designing and creating a service-oriented framework that helps location- and context-aware, client-service type application development and use. Location information is combined with other contexts such as the users' history, preferences and disabilities. The framework also handles the spatial model of the environment (e.g. map of a room or a building) as a context. The framework is built on a semantic backend where the ontologies are represented using the OWL description language. The use of ontologies enables the framework to run inference tasks and to easily adapt to new context types. The framework contains a compatibility layer for positioning devices, which hides the technical differences of positioning technologies and enables the combination of location data of various sources
    corecore