389 research outputs found

    Sim-to-Real Reinforcement Learning Framework for Autonomous Aerial Leaf Sampling

    Get PDF
    Using unmanned aerial systems (UAS) for leaf sampling is contributing to a better understanding of the influence of climate change on plant species, and the dynamics of forest ecology by studying hard-to-reach tree canopies. Currently, multiple skilled operators are required for UAS maneuvering and using the leaf sampling tool. This often limits sampling to only the canopy top or periphery. Sim-to-real reinforcement learning (RL) can be leveraged to tackle challenges in the autonomous operation of aerial leaf sampling in the changing environment of a tree canopy. However, trans- ferring an RL controller that is learned in simulation to real UAS applications is challenging due to the risk of crashes. UAS crashes pose safety risks to the operator and its surroundings which often leads to expensive UAS repairs. In this thesis, we present a Sim-to-Real Transfer framework using a computer numerical control (CNC) platform as a safer, and more robust proxy, before using the controller on a UAS. In addition, our framework provides an end-to-end complete pipeline to learn, and test, any deep RL controller for UAS or any three-axis robot for various control tasks. Our framework facilitates bi-directional iterative improvements to the simulation environment and real robot, by allowing instant deployment of the simulation learned controller to the real robot for performance verification and issue identification. Our results show that we can perform a zero-shot transfer of the RL agent, which is trained in simulation, to real CNC. The accuracy and precision do not meet the requirement for complex leaf sampling tasks yet. However, the RL agent trained for a static target following still follows or attempts to follow more dynamic and changing targets with predictable performance. This works lays the foundation by setting up the initial validation requirements for the leaf sampling tasks and identifies potential areas for improvement. Further tuning of the system and experimentation of the RL agent type would pave the way to autonomous aerial leaf sampling. Adviser: Carrick Detweile

    A comparison between Recurrent Neural Networks and classical machine learning approaches In Laser induced breakdown spectroscopy

    Full text link
    Recurrent Neural Networks are classes of Artificial Neural Networks that establish connections between different nodes form a directed or undirected graph for temporal dynamical analysis. In this research, the laser induced breakdown spectroscopy (LIBS) technique is used for quantitative analysis of aluminum alloys by different Recurrent Neural Network (RNN) architecture. The fundamental harmonic (1064 nm) of a nanosecond Nd:YAG laser pulse is employed to generate the LIBS plasma for the prediction of constituent concentrations of the aluminum standard samples. Here, Recurrent Neural Networks based on different networks, such as Long Short Term Memory (LSTM), Gated Recurrent Unit (GRU), Simple Recurrent Neural Network (Simple RNN), and as well as Recurrent Convolutional Networks comprising of Conv-SimpleRNN, Conv-LSTM and Conv-GRU are utilized for concentration prediction. Then a comparison is performed among prediction by classical machine learning methods of support vector regressor (SVR), the Multi Layer Perceptron (MLP), Decision Tree algorithm, Gradient Boosting Regression (GBR), Random Forest Regression (RFR), Linear Regression, and k-Nearest Neighbor (KNN) algorithm. Results showed that the machine learning tools based on Convolutional Recurrent Networks had the best efficiencies in prediction of the most of the elements among other multivariate methods

    If interpretability is the answer, what is the question?

    Get PDF
    Due to the ability to model even complex dependencies, machine learning (ML) can be used to tackle a broad range of (high-stakes) prediction problems. The complexity of the resulting models comes at the cost of transparency, meaning that it is difficult to understand the model by inspecting its parameters. This opacity is considered problematic since it hampers the transfer of knowledge from the model, undermines the agency of individuals affected by algorithmic decisions, and makes it more challenging to expose non-robust or unethical behaviour. To tackle the opacity of ML models, the field of interpretable machine learning (IML) has emerged. The field is motivated by the idea that if we could understand the model's behaviour -- either by making the model itself interpretable or by inspecting post-hoc explanations -- we could also expose unethical and non-robust behaviour, learn about the data generating process, and restore the agency of affected individuals. IML is not only a highly active area of research, but the developed techniques are also widely applied in both industry and the sciences. Despite the popularity of IML, the field faces fundamental criticism, questioning whether IML actually helps in tackling the aforementioned problems of ML and even whether it should be a field of research in the first place: First and foremost, IML is criticised for lacking a clear goal and, thus, a clear definition of what it means for a model to be interpretable. On a similar note, the meaning of existing methods is often unclear, and thus they may be misunderstood or even misused to hide unethical behaviour. Moreover, estimating conditional-sampling-based techniques poses a significant computational challenge. With the contributions included in this thesis, we tackle these three challenges for IML. We join a range of work by arguing that the field struggles to define and evaluate "interpretability" because incoherent interpretation goals are conflated. However, the different goals can be disentangled such that coherent requirements can inform the derivation of the respective target estimands. We demonstrate this with the examples of two interpretation contexts: recourse and scientific inference. To tackle the misinterpretation of IML methods, we suggest deriving formal interpretation rules that link explanations to aspects of the model and data. In our work, we specifically focus on interpreting feature importance. Furthermore, we collect interpretation pitfalls and communicate them to a broader audience. To efficiently estimate conditional-sampling-based interpretation techniques, we propose two methods that leverage the dependence structure in the data to simplify the estimation problems for Conditional Feature Importance (CFI) and SAGE. A causal perspective proved to be vital in tackling the challenges: First, since IML problems such as algorithmic recourse are inherently causal; Second, since causality helps to disentangle the different aspects of model and data and, therefore, to distinguish the insights that different methods provide; And third, algorithms developed for causal structure learning can be leveraged for the efficient estimation of conditional-sampling based IML methods.Aufgrund der Fähigkeit, selbst komplexe Abhängigkeiten zu modellieren, kann maschinelles Lernen (ML) zur Lösung eines breiten Spektrums von anspruchsvollen Vorhersageproblemen eingesetzt werden. Die Komplexität der resultierenden Modelle geht auf Kosten der Interpretierbarkeit, d. h. es ist schwierig, das Modell durch die Untersuchung seiner Parameter zu verstehen. Diese Undurchsichtigkeit wird als problematisch angesehen, da sie den Wissenstransfer aus dem Modell behindert, sie die Handlungsfähigkeit von Personen, die von algorithmischen Entscheidungen betroffen sind, untergräbt und sie es schwieriger macht, nicht robustes oder unethisches Verhalten aufzudecken. Um die Undurchsichtigkeit von ML-Modellen anzugehen, hat sich das Feld des interpretierbaren maschinellen Lernens (IML) entwickelt. Dieses Feld ist von der Idee motiviert, dass wir, wenn wir das Verhalten des Modells verstehen könnten - entweder indem wir das Modell selbst interpretierbar machen oder anhand von post-hoc Erklärungen - auch unethisches und nicht robustes Verhalten aufdecken, über den datengenerierenden Prozess lernen und die Handlungsfähigkeit betroffener Personen wiederherstellen könnten. IML ist nicht nur ein sehr aktiver Forschungsbereich, sondern die entwickelten Techniken werden auch weitgehend in der Industrie und den Wissenschaften angewendet. Trotz der Popularität von IML ist das Feld mit fundamentaler Kritik konfrontiert, die in Frage stellt, ob IML tatsächlich dabei hilft, die oben genannten Probleme von ML anzugehen, und ob es überhaupt ein Forschungsgebiet sein sollte: In erster Linie wird an IML kritisiert, dass es an einem klaren Ziel und damit an einer klaren Definition dessen fehlt, was es für ein Modell bedeutet, interpretierbar zu sein. Weiterhin ist die Bedeutung bestehender Methoden oft unklar, so dass sie missverstanden oder sogar missbraucht werden können, um unethisches Verhalten zu verbergen. Letztlich stellt die Schätzung von auf bedingten Stichproben basierenden Verfahren eine erhebliche rechnerische Herausforderung dar. In dieser Arbeit befassen wir uns mit diesen drei grundlegenden Herausforderungen von IML. Wir schließen uns der Argumentation an, dass es schwierig ist, "Interpretierbarkeit" zu definieren und zu bewerten, weil inkohärente Interpretationsziele miteinander vermengt werden. Die verschiedenen Ziele lassen sich jedoch entflechten, sodass kohärente Anforderungen die Ableitung der jeweiligen Zielgrößen informieren. Wir demonstrieren dies am Beispiel von zwei Interpretationskontexten: algorithmischer Regress und wissenschaftliche Inferenz. Um der Fehlinterpretation von IML-Methoden zu begegnen, schlagen wir vor, formale Interpretationsregeln abzuleiten, die Erklärungen mit Aspekten des Modells und der Daten verknüpfen. In unserer Arbeit konzentrieren wir uns speziell auf die Interpretation von sogenannten Feature Importance Methoden. Darüber hinaus tragen wir wichtige Interpretationsfallen zusammen und kommunizieren sie an ein breiteres Publikum. Zur effizienten Schätzung auf bedingten Stichproben basierender Interpretationstechniken schlagen wir zwei Methoden vor, die die Abhängigkeitsstruktur in den Daten nutzen, um die Schätzprobleme für Conditional Feature Importance (CFI) und SAGE zu vereinfachen. Eine kausale Perspektive erwies sich als entscheidend für die Bewältigung der Herausforderungen: Erstens, weil IML-Probleme wie der algorithmische Regress inhärent kausal sind; zweitens, weil Kausalität hilft, die verschiedenen Aspekte von Modell und Daten zu entflechten und somit die Erkenntnisse, die verschiedene Methoden liefern, zu unterscheiden; und drittens können wir Algorithmen, die für das Lernen kausaler Struktur entwickelt wurden, für die effiziente Schätzung von auf bindingten Verteilungen basierenden IML-Methoden verwenden

    Statistical learning for predictive targeting in online advertising

    Get PDF

    Data-Driven Methods and Applications for Optimization under Uncertainty and Rare-Event Simulation

    Full text link
    For most of decisions or system designs in practice, there exist chances of severe hazards or system failures that can be catastrophic. The occurrence of such hazards is usually uncertain, and hence it is important to measure and analyze the associated risks. As a powerful tool for estimating risks, rare-event simulation techniques are used to improve the efficiency of the estimation when the risk occurs with an extremely small probability. Furthermore, one can utilize the risk measurements to achieve better decisions or designs. This can be achieved by modeling the task into a chance constrained optimization problem, which optimizes an objective with a controlled risk level. However, recent problems in practice have become more data-driven and hence brought new challenges to the existing literature in these two domains. In this dissertation, we will discuss challenges and remedies in data-driven problems for rare-event simulation and chance constrained problems. We propose a robust optimization based framework for approaching chance constrained optimization problems under a data-driven setting. We also analyze the impact of tail uncertainty in data-driven rare-event simulation tasks. On the other hand, due to recent breakthroughs in machine learning techniques, the development of intelligent physical systems, e.g. autonomous vehicles, have been actively investigated. Since these systems can cause catastrophes to public safety, the evaluation of their machine learning components and system performance is crucial. This dissertation will cover problems arising in the evaluation of such systems. We propose an importance sampling scheme for estimating rare events defined by machine learning predictors. Lastly, we discuss an application project in evaluating the safety of autonomous vehicle driving algorithms.PHDIndustrial & Operations EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/163270/1/zhyhuang_1.pd

    Learning to Predict Combinatorial Structures

    Get PDF
    The major challenge in designing a discriminative learning algorithm for predicting structured data is to address the computational issues arising from the exponential size of the output space. Existing algorithms make different assumptions to ensure efficient, polynomial time estimation of model parameters. For several combinatorial structures, including cycles, partially ordered sets, permutations and other graph classes, these assumptions do not hold. In this thesis, we address the problem of designing learning algorithms for predicting combinatorial structures by introducing two new assumptions: (i) The first assumption is that a particular counting problem can be solved efficiently. The consequence is a generalisation of the classical ridge regression for structured prediction. (ii) The second assumption is that a particular sampling problem can be solved efficiently. The consequence is a new technique for designing and analysing probabilistic structured prediction models. These results can be applied to solve several complex learning problems including but not limited to multi-label classification, multi-category hierarchical classification, and label ranking.Comment: PhD thesis, Department of Computer Science, University of Bonn (submitted, December 2009
    corecore