34,841 research outputs found

    Distributed Signaling Games

    Get PDF
    A recurring theme in recent computer science literature is that proper design of signaling schemes is a crucial aspect of effective mechanisms aiming to optimize social welfare or revenue. One of the research endeavors of this line of work is understanding the algorithmic and computational complexity of designing efficient signaling schemes. In reality, however, information is typically not held by a central authority, but is distributed among multiple sources (third-party "mediators"), a fact that dramatically changes the strategic and combinatorial nature of the signaling problem, making it a game between information providers, as opposed to a traditional mechanism design problem. In this paper we introduce {\em distributed signaling games}, while using display advertising as a canonical example for introducing this foundational framework. A distributed signaling game may be a pure coordination game (i.e., a distributed optimization task), or a non-cooperative game. In the context of pure coordination games, we show a wide gap between the computational complexity of the centralized and distributed signaling problems. On the other hand, we show that if the information structure of each mediator is assumed to be "local", then there is an efficient algorithm that finds a near-optimal (55-approximation) distributed signaling scheme. In the context of non-cooperative games, the outcome generated by the mediators' signals may have different value to each (due to the auctioneer's desire to align the incentives of the mediators with his own by relative compensations). We design a mechanism for this problem via a novel application of Shapley's value, and show that it possesses some interesting properties, in particular, it always admits a pure Nash equilibrium, and it never decreases the revenue of the auctioneer

    Information Structure Design in Team Decision Problems

    Full text link
    We consider a problem of information structure design in team decision problems and team games. We propose simple, scalable greedy algorithms for adding a set of extra information links to optimize team performance and resilience to non-cooperative and adversarial agents. We show via a simple counterexample that the set function mapping additional information links to team performance is in general not supermodular. Although this implies that the greedy algorithm is not accompanied by worst-case performance guarantees, we illustrate through numerical experiments that it can produce effective and often optimal or near optimal information structure modifications

    Incentives-Based Mechanism for Efficient Demand Response Programs

    Full text link
    In this work we investigate the inefficiency of the electricity system with strategic agents. Specifically, we prove that without a proper control the total demand of an inefficient system is at most twice the total demand of the optimal outcome. We propose an incentives scheme that promotes optimal outcomes in the inefficient electricity market. The economic incentives can be seen as an indirect revelation mechanism that allocates resources using a one-dimensional message space per resource to be allocated. The mechanism does not request private information from users and is valid for any concave customer's valuation function. We propose a distributed implementation of the mechanism using population games and evaluate the performance of four popular dynamics methods in terms of the cost to implement the mechanism. We find that the achievement of efficiency in strategic environments might be achieved at a cost, which is dependent on both the users' preferences and the dynamic evolution of the system. Some simulation results illustrate the ideas presented throughout the paper.Comment: 38 pages, 9 figures, submitted to journa
    • …
    corecore