325 research outputs found

    Intelligent Reflecting Surface Aided Multigroup Multicast MISO Communication Systems

    Get PDF
    Intelligent reflecting surface (IRS) has recently been envisioned to offer unprecedented massive multiple-input multiple-output (MIMO)-like gains by deploying large-scale and low-cost passive reflection elements. By adjusting the reflection coefficients, the IRS can change the phase shifts on the impinging electromagnetic waves so that it can smartly reconfigure the signal propagation environment and enhance the power of the desired received signal or suppress the interference signal. In this paper, we consider downlink multigroup multicast communication systems assisted by an IRS. We aim for maximizing the sum rate of all the multicasting groups by the joint optimization of the precoding matrix at the base station (BS) and the reflection coefficients at the IRS under both the power and unit-modulus constraint. To tackle this non-convex problem, we propose two efficient algorithms. Specifically, a concave lower bound surrogate objective function has been derived firstly, based on which two sets of variables can be updated alternately by solving two corresponding second-order cone programming (SOCP) problems.Then, in order to reduce the computational complexity, we further adopt the majorization—minimization (MM) method for each set of variables at every iteration, and obtain the closed form solutions under loose surrogate objective functions. Finally, the simulation results demonstrate the benefits of the introduced IRS and the effectiveness of our proposed algorithms

    Scaling up publish/subscribe overlays using interest correlation for link sharing

    Get PDF
    Topic-based publish/subscribe is at the core of many distributed systems, ranging from application integration middleware to news dissemination. Therefore, much research was dedicated to publish/subscribe architectures and protocols, and in particular to the design of overlay networks for decentralized topic-based routing and efficient message dissemination. Nonetheless, existing systems fail to take full advantage of shared interests when disseminating information, hence suffering from high maintenance and traffic costs, or construct overlays that cope poorly with the scale and dynamism of large networks. In this paper we present StaN, a decentralized protocol that optimizes the properties of gossip-based overlay networks for topicbased publish/subscribe by sharing a large number of physical connections without disrupting its logical properties. StaN relies only on local knowledge and operates by leveraging common interests among participants to improve global resource usage and promote topic and event scalability. The experimental evaluation under two real workloads, both via a real deployment and through simulation shows that StaN provides an attractive infrastructure for scalable topic-based publish/subscribe

    Learning algorithms for the control of routing in integrated service communication networks

    Get PDF
    There is a high degree of uncertainty regarding the nature of traffic on future integrated service networks. This uncertainty motivates the use of adaptive resource allocation policies that can take advantage of the statistical fluctuations in the traffic demands. The adaptive control mechanisms must be 'lightweight', in terms of their overheads, and scale to potentially large networks with many traffic flows. Adaptive routing is one form of adaptive resource allocation, and this thesis considers the application of Stochastic Learning Automata (SLA) for distributed, lightweight adaptive routing in future integrated service communication networks. The thesis begins with a broad critical review of the use of Artificial Intelligence (AI) techniques applied to the control of communication networks. Detailed simulation models of integrated service networks are then constructed, and learning automata based routing is compared with traditional techniques on large scale networks. Learning automata are examined for the 'Quality-of-Service' (QoS) routing problem in realistic network topologies, where flows may be routed in the network subject to multiple QoS metrics, such as bandwidth and delay. It is found that learning automata based routing gives considerable blocking probability improvements over shortest path routing, despite only using local connectivity information and a simple probabilistic updating strategy. Furthermore, automata are considered for routing in more complex environments spanning issues such as multi-rate traffic, trunk reservation, routing over multiple domains, routing in high bandwidth-delay product networks and the use of learning automata as a background learning process. Automata are also examined for routing of both 'real-time' and 'non-real-time' traffics in an integrated traffic environment, where the non-real-time traffic has access to the bandwidth 'left over' by the real-time traffic. It is found that adopting learning automata for the routing of the real-time traffic may improve the performance to both real and non-real-time traffics under certain conditions. In addition, it is found that one set of learning automata may route both traffic types satisfactorily. Automata are considered for the routing of multicast connections in receiver-oriented, dynamic environments, where receivers may join and leave the multicast sessions dynamically. Automata are shown to be able to minimise the average delay or the total cost of the resulting trees using the appropriate feedback from the environment. Automata provide a distributed solution to the dynamic multicast problem, requiring purely local connectivity information and a simple updating strategy. Finally, automata are considered for the routing of multicast connections that require QoS guarantees, again in receiver-oriented dynamic environments. It is found that the distributed application of learning automata leads to considerably lower blocking probabilities than a shortest path tree approach, due to a combination of load balancing and minimum cost behaviour

    Direct communication radio Iinterface for new radio multicasting and cooperative positioning

    Get PDF
    Cotutela: Universidad de defensa UNIVERSITA’ MEDITERRANEA DI REGGIO CALABRIARecently, the popularity of Millimeter Wave (mmWave) wireless networks has increased due to their capability to cope with the escalation of mobile data demands caused by the unprecedented proliferation of smart devices in the fifth-generation (5G). Extremely high frequency or mmWave band is a fundamental pillar in the provision of the expected gigabit data rates. Hence, according to both academic and industrial communities, mmWave technology, e.g., 5G New Radio (NR) and WiGig (60 GHz), is considered as one of the main components of 5G and beyond networks. Particularly, the 3rd Generation Partnership Project (3GPP) provides for the use of licensed mmWave sub-bands for the 5G mmWave cellular networks, whereas IEEE actively explores the unlicensed band at 60 GHz for the next-generation wireless local area networks. In this regard, mmWave has been envisaged as a new technology layout for real-time heavy-traffic and wearable applications. This very work is devoted to solving the problem of mmWave band communication system while enhancing its advantages through utilizing the direct communication radio interface for NR multicasting, cooperative positioning, and mission-critical applications. The main contributions presented in this work include: (i) a set of mathematical frameworks and simulation tools to characterize multicast traffic delivery in mmWave directional systems; (ii) sidelink relaying concept exploitation to deal with the channel condition deterioration of dynamic multicast systems and to ensure mission-critical and ultra-reliable low-latency communications; (iii) cooperative positioning techniques analysis for enhancing cellular positioning accuracy for 5G+ emerging applications that require not only improved communication characteristics but also precise localization. Our study indicates the need for additional mechanisms/research that can be utilized: (i) to further improve multicasting performance in 5G/6G systems; (ii) to investigate sideline aspects, including, but not limited to, standardization perspective and the next relay selection strategies; and (iii) to design cooperative positioning systems based on Device-to-Device (D2D) technology
    • …
    corecore