10 research outputs found

    Dynamically reconfigurable bio-inspired hardware

    Get PDF
    During the last several years, reconfigurable computing devices have experienced an impressive development in their resource availability, speed, and configurability. Currently, commercial FPGAs offer the possibility of self-reconfiguring by partially modifying their configuration bitstream, providing high architectural flexibility, while guaranteeing high performance. These configurability features have received special interest from computer architects: one can find several reconfigurable coprocessor architectures for cryptographic algorithms, image processing, automotive applications, and different general purpose functions. On the other hand we have bio-inspired hardware, a large research field taking inspiration from living beings in order to design hardware systems, which includes diverse topics: evolvable hardware, neural hardware, cellular automata, and fuzzy hardware, among others. Living beings are well known for their high adaptability to environmental changes, featuring very flexible adaptations at several levels. Bio-inspired hardware systems require such flexibility to be provided by the hardware platform on which the system is implemented. In general, bio-inspired hardware has been implemented on both custom and commercial hardware platforms. These custom platforms are specifically designed for supporting bio-inspired hardware systems, typically featuring special cellular architectures and enhanced reconfigurability capabilities; an example is their partial and dynamic reconfigurability. These aspects are very well appreciated for providing the performance and the high architectural flexibility required by bio-inspired systems. However, the availability and the very high costs of such custom devices make them only accessible to a very few research groups. Even though some commercial FPGAs provide enhanced reconfigurability features such as partial and dynamic reconfiguration, their utilization is still in its early stages and they are not well supported by FPGA vendors, thus making their use difficult to include in existing bio-inspired systems. In this thesis, I present a set of architectures, techniques, and methodologies for benefiting from the configurability advantages of current commercial FPGAs in the design of bio-inspired hardware systems. Among the presented architectures there are neural networks, spiking neuron models, fuzzy systems, cellular automata and random boolean networks. For these architectures, I propose several adaptation techniques for parametric and topological adaptation, such as hebbian learning, evolutionary and co-evolutionary algorithms, and particle swarm optimization. Finally, as case study I consider the implementation of bio-inspired hardware systems in two platforms: YaMoR (Yet another Modular Robot) and ROPES (Reconfigurable Object for Pervasive Systems); the development of both platforms having been co-supervised in the framework of this thesis

    Evolving robots: from simple behaviours to complete systems

    Get PDF
    Building robots is generally considered difficult, because the designer not only has to predict the interaction between the robot and the environment, but also has to deal with the ensuing problems. This thesis examines the use of the evolutionary approach in designing robots; the explorations range from evolving simple behaviours for real robots, to complex behaviours (also for real robots), and finally to complete robot systems — including controllers and body plans. A framework is presented for evolving robot control systems. It includes two components: a task independent Genetic Programming sub-system and a task dependent controller evaluation sub-system. The performance evaluation of each robot controller is done in a simulator to reduce the evaluation time, and then the evolved controllers are downloaded to a real robot for performance verification. In addition, a special rep¬ resentation is designed for the reactive robot controller. It is succinct and can capture the important characteristics of a reactive control system, so that the evolutionary system can efficiently evolve the controllers of the desired behaviours for the robots. The framework has been successfully used to evolve controllers for real robots to achieve a variety of simple tasks, such as obstacle avoidance, safe exploration and box-pushing. A methodology is then proposed to scale up the system to evolve controllers for more complicated tasks. It involves adopting the architecture of a behaviour-based system, and evolving separate behaviour controllers and arbitrators for coordination. This allows robot controllers for more complex skills to be constructed in an incremental manner. Therefore the whole control system becomes easy to evolve; moreover, the resulting control system can be explicitly distributed, understandable to the system designer, and easy to maintain. The methodology has been used to evolve control systems for more complex tasks with good results. Finally, the evolutionary mechanism of the framework described above is extended to include a Genetic Algorithm sub-system for the co-evolution of robot body plans — structuralparametersofphysicalrobotsencodedaslinearstringsofrealnumbers. An individual in the extended system thus consists of a brain(controller) and a body. Whenever the individual is evaluated, the controller is executed on the corresponding body for a period of time to measure the performance. In such a system the Genetic Programming part evolves the controller; and the Genetic Algorithm part, the robot body. The results show that the complete robot system can be evolved in this manner. i

    Evolvable hardware platform for fault-tolerant reconfigurable sensor electronics

    Get PDF

    Exploiting development to enhance the scalability of hardware evolution.

    Get PDF
    Evolutionary algorithms do not scale well to the large, complex circuit design problems typical of the real world. Although techniques based on traditional design decomposition have been proposed to enhance hardware evolution's scalability, they often rely on traditional domain knowledge that may not be appropriate for evolutionary search and might limit evolution's opportunity to innovate. It has been proposed that reliance on such knowledge can be avoided by introducing a model of biological development to the evolutionary algorithm, but this approach has not yet achieved its potential. Prior demonstrations of how development can enhance scalability used toy problems that are not indicative of evolving hardware. Prior attempts to apply development to hardware evolution have rarely been successful and have never explored its effect on scalability in detail. This thesis demonstrates that development can enhance scalability in hardware evolution, primarily through a statistical comparison of hardware evolution's performance with and without development using circuit design problems of various sizes. This is reinforced by proposing and demonstrating three key mechanisms that development uses to enhance scalability: the creation of modules, the reuse of modules, and the discovery of design abstractions. The thesis includes several minor contributions: hardware is evolved using a common reconfigurable architecture at a lower level of abstraction than reported elsewhere. It is shown that this can allow evolution to exploit the architecture more efficiently and perhaps search more effectively. Also the benefits of several features of developmental models are explored through the biases they impose on the evolutionary search. Features that are explored include the type of environmental context development uses and the constraints on symmetry and information transmission they impose, genetic operators that may improve the robustness of gene networks, and how development is mapped to hardware. Also performance is compared against contemporary developmental models

    Proceedings of AUTOMATA 2011 : 17th International Workshop on Cellular Automata and Discrete Complex Systems

    Get PDF
    International audienceThe proceedings contain full (reviewed) papers and short (non reviewed) papers that were presented at the workshop

    Diseño e implementación de arquitecturas dinámicamente reconfigurables basadas en microprocesador

    Full text link
    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid. Escuela Técnica Superior de Informática, Departamento de Ingeniería Informática. Fecha de lectura: 1-06-200
    corecore