6,874 research outputs found

    Algorithms For Extracting Timeliness Graphs

    Get PDF
    We consider asynchronous message-passing systems in which some links are timely and processes may crash. Each run defines a timeliness graph among correct processes: (p; q) is an edge of the timeliness graph if the link from p to q is timely (that is, there is bound on communication delays from p to q). The main goal of this paper is to approximate this timeliness graph by graphs having some properties (such as being trees, rings, ...). Given a family S of graphs, for runs such that the timeliness graph contains at least one graph in S then using an extraction algorithm, each correct process has to converge to the same graph in S that is, in a precise sense, an approximation of the timeliness graph of the run. For example, if the timeliness graph contains a ring, then using an extraction algorithm, all correct processes eventually converge to the same ring and in this ring all nodes will be correct processes and all links will be timely. We first present a general extraction algorithm and then a more specific extraction algorithm that is communication efficient (i.e., eventually all the messages of the extraction algorithm use only links of the extracted graph)

    The Failure Detector Abstraction

    Full text link
    This paper surveys the failure detector concept through two dimensions. First we study failure detectors as building blocks to simplify the design of reliable distributed algorithms. More specifically, we illustrate how failure detectors can factor out timing assumptions to detect failures in distributed agreement algorithms. Second, we study failure detectors as computability benchmarks. That is, we survey the weakest failure detector question and illustrate how failure detectors can be used to classify problems. We also highlights some limitations of the failure detector abstraction along each of the dimensions

    A framework for proving the self-organization of dynamic systems

    Get PDF
    This paper aims at providing a rigorous definition of self- organization, one of the most desired properties for dynamic systems (e.g., peer-to-peer systems, sensor networks, cooperative robotics, or ad-hoc networks). We characterize different classes of self-organization through liveness and safety properties that both capture information re- garding the system entropy. We illustrate these classes through study cases. The first ones are two representative P2P overlays (CAN and Pas- try) and the others are specific implementations of \Omega (the leader oracle) and one-shot query abstractions for dynamic settings. Our study aims at understanding the limits and respective power of existing self-organized protocols and lays the basis of designing robust algorithm for dynamic systems

    Efficient and robust adaptive consensus services based on oracles

    Get PDF

    Failure Detectors for Wireless Sensor-Actuator Systems

    Get PDF
    Wireless sensor-actuator systems (WSAS) offer exciting opportunities for emerging applications by facilitating fine-grained monitoring and control, and dense instrumentation. The large scale of such systems increases the need for such systems to tolerate and cope with failures, in a localized and decentralized manner. We present abstractions for detecting node failures and link failures caused by topology changes in a WSAS. These abstractions were designed and implemented as a set of reusable components in nesC under TinyOS. Results, which demonstrate the performance and viability of the abstractions, based on experiments on an 80 node testbed are presented. In the future, these abstractions can be extended to detect and cope with larger classes of failures in WSAS
    corecore