27 research outputs found

    Compliant, Large-Strain, and Self-Sensing Twisted String Actuators with Applications to Soft Robots

    Get PDF
    The twisted string actuator (TSA) is a rotary-to-linear transmission system that has been implemented in robots for high force output and efficiency. The basic components of a TSA are a motor, strings, and a load (to keep the strings in tension). The twisting of the strings shortens their length to generate linear contraction. Due to their high force output, energy efficiency, and compact form factor, TSAs hold the potential to improve the performance of soft robots. Currently, it is challenging to realize high-performance soft robots because many existing soft or compliant actuators exhibit limitations such as fabrication complexity, high power consumption, slow actuation, or low force generation. The applications of TSAs in soft robots have hitherto been limited, mainly for two reasons. Firstly, the conventional strings of TSAs are stiff and strong, but not compliant. Secondly, precise control of TSAs predominantly relies on external position or force sensors. For these reasons, TSA-driven robots are often rigid or bulky.To make TSAs more suitable for actuating soft robots, compliant, large-strain, and self-sensing TSAs are developed and applied to various soft robots in this work. The design was realized by replacing conventional inelastic strings with compliant, thermally-activated, and conductive supercoiled polymer (SCP) strings. Self-sensing was realized by correlating the electrical resistance of the strings with their length. Large strains are realized by heating the strings in addition to twisting them. The quasi-static actuation and self-sensing properties are accurately captured by Preisach hysteresis operators. Next, a data-driven mathematical model was proposed and experimentally validated to capture the transient decay, creep, and hysteretic effects in the electrical resistance. This model was then used to predict the length of the TSA, given its resistance. Furthermore, three TSA-driven soft robots were designed and fabricated: a three-fingered gripper, a soft manipulator, and an anthropomorphic gripper. For the three-fingered gripper, its fingers were compliant and designed to exploit the Fin Ray Effect for improved grasping. The soft manipulator was driven by three TSAs that allowed it to bend with arbitrary magnitude and direction. A physics-based modeling strategy was developed to predict this multi-degree-of-freedom motion. The proposed modeling approaches were experimentally verified to be effective. For example, the proposed model predicted bending angle and bending velocity with mean errors of 1.58 degrees (2.63%) and 0.405 degrees/sec (4.31%), respectively. The anthropomorphic gripper contained 11 TSAs; two TSAs were embedded in each of the four fingers and three TSAs were embedded in the thumb. Furthermore, the anthropomorphic gripper achieved tunable stiffness and a wide range of grasps

    An anthropomorphic soft skeleton hand exploiting conditional models for piano playing.

    Get PDF
    The development of robotic manipulators and hands that show dexterity, adaptability, and subtle behavior comparable to human hands is an unsolved research challenge. In this article, we considered the passive dynamics of mechanically complex systems, such as a skeleton hand, as an approach to improving adaptability, dexterity, and richness of behavioral diversity of such robotic manipulators. With the use of state-of-the-art multimaterial three-dimensional printing technologies, it is possible to design and construct complex passive structures, namely, a complex anthropomorphic skeleton hand that shows anisotropic mechanical stiffness. We introduce a concept, termed the "conditional model," that exploits the anisotropic stiffness of complex soft-rigid hybrid systems. In this approach, the physical configuration, environment conditions, and conditional actuation (applied actuation) resulted in an observable conditional model, allowing joint actuation through passivity-based dynamic interactions. The conditional model approach allowed the physical configuration and actuation to be altered, enabling a single skeleton hand to perform three different phrases of piano music with varying styles and forms and facilitating improved dynamic behaviors and interactions with the piano over those achievable with a rigid end effector

    Designing Prosthetic Hands With Embodied Intelligence: The KIT Prosthetic Hands

    Get PDF
    Hand prostheses should provide functional replacements of lost hands. Yet current prosthetic hands often are not intuitive to control and easy to use by amputees. Commercially available prostheses are usually controlled based on EMG signals triggered by the user to perform grasping tasks. Such EMG-based control requires long training and depends heavily on the robustness of the EMG signals. Our goal is to develop prosthetic hands with semi-autonomous grasping abilities that lead to more intuitive control by the user. In this paper, we present the development of prosthetic hands that enable such abilities as first results toward this goal. The developed prostheses provide intelligent mechatronics including adaptive actuation, multi-modal sensing and on-board computing resources to enable autonomous and intuitive control. The hands are scalable in size and based on an underactuated mechanism which allows the adaptation of grasps to the shape of arbitrary objects. They integrate a multi-modal sensor system including a camera and in the newest version a distance sensor and IMU. A resource-aware embedded system for in-hand processing of sensory data and control is included in the palm of each hand. We describe the design of the new version of the hands, the female hand prosthesis with a weight of 377 g, a grasping force of 40.5 N and closing time of 0.73 s. We evaluate the mechatronics of the hand, its grasping abilities based on the YCB Gripper Assessment Protocol as well as a task-oriented protocol for assessing the hand performance in activities of daily living. Further, we exemplarily show the suitability of the multi-modal sensor system for sensory-based, semi-autonomous grasping in daily life activities. The evaluation demonstrates the merit of the hand concept, its sensor and in-hand computing systems

    Adaptive robust interaction control for low-cost robotic grasping

    Get PDF
    Robotic grasping is a challenging area in the field of robotics. When a gripper starts interacting with an object to perform a grasp, the mechanical properties of the object (stiffness and damping) will play an important role. A gripper which is stable in isolated conditions, can become unstable when coupled to an object. This can lead to the extreme condition where the gripper becomes unstable and generates excessive or insufficient grip force resulting in the grasped object either being crushed, or falling and breaking. In addition to the stability issue, grasp maintenance is one of the most important requirements of any grasp where it guarantees a secure grasp in the presence of any unknown disturbance. The term grasp maintenance refers to the reaction of the controller in the presence of external disturbances, trying to prevent any undesired slippage. To do so, the controller continuously adjusts the grip force. This is a challenging task as it requires an accurate model of the friction and object’s weight to estimate a sufficient grip force to stop the object from slipping while incurring minimum deformation. Unfortunately, in reality, there is no solution which is able to obtain the mechanical properties, frictional coefficient and weight of an object before establishing a mechanical interaction with it. External disturbance forces are also stochastic meaning they are impossible to predict. This thesis addresses both of the problems mentioned above by:Creating a novel variable stiffness gripper, capable of grasping unknown objects, mainly those found in agricultural or food manufacturing companies. In addition to the stabilisation effect of the introduced variable stiffness mechanism, a novel force control algorithm has been designed that passively controls the grip force in variable stiffness grippers. Due to the passive nature of the suggested controller, it completely eliminates the necessity for any force sensor. The combination of both the proposed variable stiffness gripper and the passivity based control provides a unique solution for the stable grasp and force control problem in tendon driven, angular grippers.Introducing a novel active multi input-multi output slip prevention algorithm. The algorithm developed provides a robust control solution to endow direct drive parallel jaw grippers with the capability to stop held objects from slipping while incurring minimum deformation; this can be done without any prior knowledge of the object’s friction and weight. The large number of experiments provided in this thesis demonstrate the robustness of the proposed controller when controlling parallel jaw grippers in order to quickly grip, lift and place a broad range of objects firmly without dropping or crushing them. This is particularly useful for teleoperation and nuclear decommissioning tasks where there is often no accurate information available about the objects to be handled. This can mean that pre-programming of the gripper is required for each different object and for high numbers of objects this is impractical and overly time-consuming. A robust controller, which is able to compensate for any uncertainties regarding the object model and any unknown external disturbances during grasping, is implemented. This work has advanced the state of the art in the following two main areas: Direct impedance modulation for stable grasping in tendon driven, angular grippers. Active MIMO slip prevention grasp control for direct drive parallel jaw grippers

    Lightweight High-Speed and High-Force Gripper for Assembly

    Full text link
    This paper presents a novel industrial robotic gripper with a high grasping speed (maximum: 1396 mm/s), high tip force (maximum: 80 N) for grasping, large motion range, and lightweight design (0.3 kg). To realize these features, the high-speed section of the quick-return mechanism and load-sensitive continuously variable transmission mechanism are installed in the gripper. The gripper is also equipped with a self-centering function. The high grasping speed and self-centering function improve the cycle time in robotic operations. In addition, the high tip force is advantageous for stably grasping and assembling heavy objects. Moreover, the design of the gripper reduce the gripper's proportion of the manipulator's payload, thus increasing the weight of the object that can be grasped. The gripper performance was validated through kinematic and static analyses as well as experimental evaluations. This paper also presents the analysis of the self-centering function of the developed gripper

    Soft Robotics: Design for Simplicity, Performance, and Robustness of Robots for Interaction with Humans.

    Get PDF
    This thesis deals with the design possibilities concerning the next generation of advanced Robots. Aim of the work is to study, analyse and realise artificial systems that are essentially simple, performing and robust and can live and coexist with humans. The main design guideline followed in doing so is the Soft Robotics Approach, that implies the design of systems with intrinsic mechanical compliance in their architecture. The first part of the thesis addresses design of new soft robotics actuators, or robotic muscles. At the beginning are provided information about what a robotic muscle is and what is needed to realise it. A possible classification of these systems is analysed and some criteria useful for their comparison are explained. After, a set of functional specifications and parameters is identified and defined, to characterise a specific subset of this kind of actuators, called Variable Stiffness Actuators. The selected parameters converge in a data-sheet that easily defines performance and abilities of the robotic system. A complete strategy for the design and realisation of this kind of system is provided, which takes into account their me- chanical morphology and architecture. As consequence of this, some new actuators are developed, validated and employed in the execution of complex experimental tasks. In particular the actuator VSA-Cube and its add-on, a Variable Damper, are developed as the main com- ponents of a robotics low-cost platform, called VSA-CubeBot, that v can be used as an exploratory platform for multi degrees of freedom experiments. Experimental validations and mathematical models of the system employed in multi degrees of freedom tasks (bimanual as- sembly and drawing on an uneven surface), are reported. The second part of the thesis is about the design of multi fingered hands for robots. In this part of the work the Pisa-IIT SoftHand is introduced. It is a novel robot hand prototype designed with the purpose of being as easily usable, robust and simple as an industrial gripper, while exhibiting a level of grasping versatility and an aspect comparable to that of the human hand. In the thesis the main theo- retical tool used to enable such simplification, i.e. the neuroscience– based notion of soft synergies, are briefly reviewed. The approach proposed rests on ideas coming from underactuated hand design. A synthesis method to realize a desired set of soft synergies through the principled design of adaptive underactuated mechanisms, which is called the method of adaptive synergies, is discussed. This ap- proach leads to the design of hands accommodating in principle an arbitrary number of soft synergies, as demonstrated in grasping and manipulation simulations and experiments with a prototype. As a particular instance of application of the method of adaptive syner- gies, the Pisa–IIT SoftHand is then described in detail. The design and implementation of the prototype hand are shown and its effec- tiveness demonstrated through grasping experiments. Finally, control of the Pisa/IIT Hand is considered. Few different control strategies are adopted, including an experimental setup with the use of surface Electromyographic signals

    Run-time reconfiguration for efficient tracking of implanted magnets with a myokinetic control interface applied to robotic hands

    Get PDF
    Tese (doutorado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Mecânica, 2021.Este trabalho introduz a aplicação de soluções de aprendizagem de máquinas visado ao problema do rastreamento de posição do antebraço baseado em sensores magnéticos. Especi ficamente, emprega-se uma estratégia baseada em dados para criar modelos matemáticos que possam traduzir as informações magnéticas medidas em entradas utilizáveis para dispositivos protéticos. Estes modelos são implementados em FPGAs usando operadores customizados de ponto flutuante para otimizar o consumo de hardware e energia, que são importantes em dispositivos embarcados. A arquitetura de hardware é proposta para ser implementada como um sistema com reconfiguração dinâmica parcial, reduzindo potencialmente a utilização de recursos e o consumo de energia da FPGA. A estratégia de dados proposta e sua implemen tação de hardware pode alcançar uma latência na ordem de microssegundos e baixo consumo de energia, o que encoraja mais pesquisas para melhorar os métodos aqui desenvolvidos para outras aplicações.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).This work introduces the application of embedded machine learning solutions for the problem of magnetic sensors-based limb tracking. Namely, we employ a data-driven strat egy to create mathematical models that can translate the magnetic information measured to usable inputs for prosthetic devices. These models are implemented in FPGAs using cus tomized floating-point operations to optimize hardware and energy consumption, which are important in wearable devices. The hardware architecture is proposed to be implemented as a dynamically partial reconfigured system, potentially reducing resource utilization and power consumption of the FPGA. The proposed data-driven strategy and its hardware implementa tion can achieve a latency in the order of microseconds and low energy consumption, which encourages further research on improving the methods herein devised for other application

    Design, Modeling and Control of Micro-scale and Meso-scale Tendon-Driven Surgical Robots

    Get PDF
    Manual manipulation of passive surgical tools is time consuming with uncertain results in cases of navigating tortuous anatomy, avoiding critical anatomical landmarks, and reaching targets not located in the linear range of these tools. For example, in many cardiovascular procedures, manual navigation of a micro-scale passive guidewire results in increased procedure times and radiation exposure. This thesis introduces the design of two steerable guidewires: 1) A two degree-of-freedom (2-DoF) robotic guidewire with orthogonally oriented joints to access points in a three dimensional workspace, and 2) a micro-scale coaxially aligned steerable (COAST) guidewire robot that demonstrates variable and independently controlled bending length and curvature of the distal end. The 2-DoF guidewire features two micromachined joints from a tube of superelastic nitinol of outer diameter 0.78 mm. Each joint is actuated with two nitinol tendons. The joints that are used in this robot are called bidirectional asymmetric notch (BAN) joints, and the advantages of these joints are explored and analyzed. The design of the COAST robotic guidewire involves three coaxially aligned tubes with a single tendon running centrally through the length of the robot. The outer tubes are made from micromachined nitinol allowing for tendon-driven bending of the robot at variable bending curvatures, while an inner stainless steel tube controls the bending length of the robot. By varying the lengths of the tubes as well as the tendon, and by insertion and retraction of the entire assembly, various joint lengths and curvatures may be achieved. Kinematic and static models, a compact actuation system, and a controller for this robot are presented. The capability of the robot to accurately navigate through phantom anatomical bifurcations and tortuous angles is also demonstrated in three dimensional phantom vasculature. At the meso-scale, manual navigation of passive pediatric neuroendoscopes for endoscopic third ventriculostomy may not reach target locations in the patient's ventricle. This work introduces the design, analysis and control of a meso-scale two degree-of-freedom robotic bipolar electrocautery tool that increases the workspace of the neurosurgeon. A static model is proposed for the robot joints that avoids problems arising from pure kinematic control. Using this model, a control system is developed that comprises of a disturbance observer to provide precise force control and compensate for joint hysteresis. A handheld controller is developed and demonstrated in this thesis. To allow the clinician to estimate the shape of the steerable tools within the anatomy for both micro-scale and meso-scale tools, a miniature tendon force sensor and a high deflection shape sensor are proposed and demonstrated. The force sensor features a compact design consisting of a single LED, dual-phototransistor, and a dual-screen arrangement to increase the linear range of sensor output and compensate for external disturbances, thereby allowing force measurement of up to 21 N with 99.58 % accuracy. The shape sensor uses fiber Bragg grating based optical cable mounted on a micromachined tube and is capable of measuring curvatures as high as 145 /m. These sensors were incorporated and tested in the guidewire and the neuroendoscope tool robots and can provide robust feedback for closed-loop control of these devices in the future.Ph.D

    Physical Diagnosis and Rehabilitation Technologies

    Get PDF
    The book focuses on the diagnosis, evaluation, and assistance of gait disorders; all the papers have been contributed by research groups related to assistive robotics, instrumentations, and augmentative devices
    corecore