704 research outputs found

    Developing reliable anomaly detection system for critical hosts: a proactive defense paradigm

    Full text link
    Current host-based anomaly detection systems have limited accuracy and incur high processing costs. This is due to the need for processing massive audit data of the critical host(s) while detecting complex zero-day attacks which can leave minor, stealthy and dispersed artefacts. In this research study, this observation is validated using existing datasets and state-of-the-art algorithms related to the construction of the features of a host's audit data, such as the popular semantic-based extraction and decision engines, including Support Vector Machines, Extreme Learning Machines and Hidden Markov Models. There is a challenging trade-off between achieving accuracy with a minimum processing cost and processing massive amounts of audit data that can include complex attacks. Also, there is a lack of a realistic experimental dataset that reflects the normal and abnormal activities of current real-world computers. This thesis investigates the development of new methodologies for host-based anomaly detection systems with the specific aims of improving accuracy at a minimum processing cost while considering challenges such as complex attacks which, in some cases, can only be visible via a quantified computing resource, for example, the execution times of programs, the processing of massive amounts of audit data, the unavailability of a realistic experimental dataset and the automatic minimization of the false positive rate while dealing with the dynamics of normal activities. This study provides three original and significant contributions to this field of research which represent a marked advance in its body of knowledge. The first major contribution is the generation and release of a realistic intrusion detection systems dataset as well as the development of a metric based on fuzzy qualitative modeling for embedding the possible quality of realism in a dataset's design process and assessing this quality in existing or future datasets. The second key contribution is constructing and evaluating the hidden host features to identify the trivial differences between the normal and abnormal artefacts of hosts' activities at a minimum processing cost. Linux-centric features include the frequencies and ranges, frequency-domain representations and Gaussian interpretations of system call identifiers with execution times while, for Windows, a count of the distinct core Dynamic Linked Library calls is identified as a hidden host feature. The final key contribution is the development of two new anomaly-based statistical decision engines for capitalizing on the potential of some of the suggested hidden features and reliably detecting anomalies. The first engine, which has a forensic module, is based on stochastic theories including Hierarchical hidden Markov models and the second is modeled using Gaussian Mixture Modeling and Correntropy. The results demonstrate that the proposed host features and engines are competent for meeting the identified challenges

    Machine Learning Enabled Vital Sign Monitoring System

    Get PDF
    Internet of Things (IoT)- based remote health monitoring systems have an enormous potential of becoming an integral part of the future medical system. In particular, these systems can play life-saving roles for treating or monitoring patients with critical health issues. On the other hand, it can also reduce pressure on the health-care system by reducing unnecessary hospital visits of patients. Any health care monitoring system must be free from erroneous data, which may arise because of instrument failure or communication errors. In this thesis, machine-learning techniques are implemented to detect reliability and accuracy of data obtained by the IoT-based remote health monitoring. A system is a set-up where vital health signs, namely, blood pressure, respiratory rate, and pulse rate, are collected by using Spire Stone and iHealth Sense devices. This data is then sent to the intermediate device and then to the cloud. In this system, it is assumed that the channel for transmission of data (vital signs) from users to cloud server is error-free. Afterward, the information is extracted from the cloud, and two machine learning techniques, i.e., Support Vector Machines and K-Nearest Neighbor are applied to compare their accuracy in distinguishing correct and erroneous data. The thesis undertakes two different approaches of erroneous data detection. In the first approach, an unsupervised classifier called Auto Encoder (AE) is used for labeling data by using the latent features. Then the labeled data from AE is used as ground truth for comparing the accuracy of supervised learning models. In the second approach, the raw data is labeled based on the correlation between various features. The accuracy comparison is performed between strongly correlated features and weakly correlated features. Finally, the accuracy comparison between two approaches is performed to check which method is performing better for detecting erroneous data for the given dataset

    Command & Control: Understanding, Denying and Detecting - A review of malware C2 techniques, detection and defences

    Full text link
    In this survey, we first briefly review the current state of cyber attacks, highlighting significant recent changes in how and why such attacks are performed. We then investigate the mechanics of malware command and control (C2) establishment: we provide a comprehensive review of the techniques used by attackers to set up such a channel and to hide its presence from the attacked parties and the security tools they use. We then switch to the defensive side of the problem, and review approaches that have been proposed for the detection and disruption of C2 channels. We also map such techniques to widely-adopted security controls, emphasizing gaps or limitations (and success stories) in current best practices.Comment: Work commissioned by CPNI, available at c2report.org. 38 pages. Listing abstract compressed from version appearing in repor

    EFFICIENT DATA PROTECTION BY NOISING, MASKING, AND METERING

    Get PDF
    Protecting data secrecy is an important design goal of computing systems. Conventional techniques like access control mechanisms and cryptography are widely deployed, and yet security breaches and data leakages still occur. There are several challenges. First, sensitivity of the system data is not always easy to decide. Second, trustworthiness is not a constant property of the system components and users. Third, a system’s functional requirements can be at odds with its data protection requirements. In this dissertation, we show that efficient data protection can be achieved by noising, masking, or metering sensitive data. Specifically, three practical problems are addressed in the dissertation—storage side-channel attacks in Linux, server anonymity violations in web sessions, and data theft by malicious insiders. To mitigate storage side-channel attacks, we introduce a differentially private system, dpprocfs, which injects noise into side-channel vectors and also reestablishes invariants on the noised outputs. Our evaluations show that dpprocfs mitigates known storage side channels while preserving the utility of the proc filesystem for monitoring and diagnosis. To enforce server anonymity, we introduce a cloud service, PoPSiCl, which masks server identifiers, including DNS names and IP addresses, with personalized pseudonyms. PoPSiCl can defend against both passive and active network attackers with minimal impact to web-browsing performance. To prevent data theft from insiders, we introduce a system, Snowman, which restricts the user to access data only remotely and accurately meters the sensitive data output to the user by conducting taint analysis in a replica of the application execution without slowing the interactive user session.Doctor of Philosoph

    IoT-MQTT based denial of service attack modelling and detection

    Get PDF
    Internet of Things (IoT) is poised to transform the quality of life and provide new business opportunities with its wide range of applications. However, the bene_ts of this emerging paradigm are coupled with serious cyber security issues. The lack of strong cyber security measures in protecting IoT systems can result in cyber attacks targeting all the layers of IoT architecture which includes the IoT devices, the IoT communication protocols and the services accessing the IoT data. Various IoT malware such as Mirai, BASHLITE and BrickBot show an already rising IoT device based attacks as well as the usage of infected IoT devices to launch other cyber attacks. However, as sustained IoT deployment and functionality are heavily reliant on the use of e_ective data communication protocols, the attacks on other layers of IoT architecture are anticipated to increase. In the IoT landscape, the publish/- subscribe based Message Queuing Telemetry Transport (MQTT) protocol is widely popular. Hence, cyber security threats against the MQTT protocol are projected to rise at par with its increasing use by IoT manufacturers. In particular, the Internet exposed MQTT brokers are vulnerable to protocolbased Application Layer Denial of Service (DoS) attacks, which have been known to cause wide spread service disruptions in legacy systems. In this thesis, we propose Application Layer based DoS attacks that target the authentication and authorisation mechanism of the the MQTT protocol. In addition, we also propose an MQTT protocol attack detection framework based on machine learning. Through extensive experiments, we demonstrate the impact of authentication and authorisation DoS attacks on three opensource MQTT brokers. Based on the proposed DoS attack scenarios, an IoT-MQTT attack dataset was generated to evaluate the e_ectiveness of the proposed framework to detect these malicious attacks. The DoS attack evaluation results obtained indicate that such attacks can overwhelm the MQTT brokers resources even when legitimate access to it was denied and resources were restricted. The evaluations also indicate that the proposed DoS attack scenarios can signi_cantly increase the MQTT message delay, especially in QoS2 messages causing heavy tail latencies. In addition, the proposed MQTT features showed high attack detection accuracy compared to simply using TCP based features to detect MQTT based attacks. It was also observed that the protocol _eld size and length based features drastically reduced the false positive rates and hence, are suitable for detecting IoT based attacks

    AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities and Challenges

    Full text link
    Artificial Intelligence for IT operations (AIOps) aims to combine the power of AI with the big data generated by IT Operations processes, particularly in cloud infrastructures, to provide actionable insights with the primary goal of maximizing availability. There are a wide variety of problems to address, and multiple use-cases, where AI capabilities can be leveraged to enhance operational efficiency. Here we provide a review of the AIOps vision, trends challenges and opportunities, specifically focusing on the underlying AI techniques. We discuss in depth the key types of data emitted by IT Operations activities, the scale and challenges in analyzing them, and where they can be helpful. We categorize the key AIOps tasks as - incident detection, failure prediction, root cause analysis and automated actions. We discuss the problem formulation for each task, and then present a taxonomy of techniques to solve these problems. We also identify relatively under explored topics, especially those that could significantly benefit from advances in AI literature. We also provide insights into the trends in this field, and what are the key investment opportunities

    AUTOMATED NETWORK SECURITY WITH EXCEPTIONS USING SDN

    Get PDF
    Campus networks have recently experienced a proliferation of devices ranging from personal use devices (e.g. smartphones, laptops, tablets), to special-purpose network equipment (e.g. firewalls, network address translation boxes, network caches, load balancers, virtual private network servers, and authentication servers), as well as special-purpose systems (badge readers, IP phones, cameras, location trackers, etc.). To establish directives and regulations regarding the ways in which these heterogeneous systems are allowed to interact with each other and the network infrastructure, organizations typically appoint policy writing committees (PWCs) to create acceptable use policy (AUP) documents describing the rules and behavioral guidelines that all campus network interactions must abide by. While users are the audience for AUP documents produced by an organization\u27s PWC, network administrators are the responsible party enforcing the contents of such policies using low-level CLI instructions and configuration files that are typically difficult to understand and are almost impossible to show that they do, in fact, enforce the AUPs. In other words, mapping the contents of imprecise unstructured sentences into technical configurations is a challenging task that relies on the interpretation and expertise of the network operator carrying out the policy enforcement. Moreover, there are multiple places where policy enforcement can take place. For example, policies governing servers (e.g., web, mail, and file servers) are often encoded into the server\u27s configuration files. However, from a security perspective, conflating policy enforcement with server configuration is a dangerous practice because minor server misconfigurations could open up avenues for security exploits. On the other hand, policies that are enforced in the network tend to rarely change over time and are often based on one-size-fits-all policies that can severely limit the fast-paced dynamics of emerging research workflows found in campus networks. This dissertation addresses the above problems by leveraging recent advances in Software-Defined Networking (SDN) to support systems that enable novel in-network approaches developed to support an organization\u27s network security policies. Namely, we introduce PoLanCO, a human-readable yet technically-precise policy language that serves as a middle-ground between the imprecise statements found in AUPs and the technical low-level mechanisms used to implement them. Real-world examples show that PoLanCO is capable of implementing a wide range of policies found in campus networks. In addition, we also present the concept of Network Security Caps, an enforcement layer that separates server/device functionality from policy enforcement. A Network Security Cap intercepts packets coming from, and going to, servers and ensures policy compliance before allowing network devices to process packets using the traditional forwarding mechanisms. Lastly, we propose the on-demand security exceptions model to cope with the dynamics of emerging research workflows that are not suited for a one-size-fits-all security approach. In the proposed model, network users and providers establish trust relationships that can be used to temporarily bypass the policy compliance checks applied to general-purpose traffic -- typically by network appliances that perform Deep Packet Inspection, thereby creating network bottlenecks. We describe the components of a prototype exception system as well as experiments showing that through short-lived exceptions researchers can realize significant improvements for their special-purpose traffic

    Cognitive Machine Individualism in a Symbiotic Cybersecurity Policy Framework for the Preservation of Internet of Things Integrity: A Quantitative Study

    Get PDF
    This quantitative study examined the complex nature of modern cyber threats to propose the establishment of cyber as an interdisciplinary field of public policy initiated through the creation of a symbiotic cybersecurity policy framework. For the public good (and maintaining ideological balance), there must be recognition that public policies are at a transition point where the digital public square is a tangible reality that is more than a collection of technological widgets. The academic contribution of this research project is the fusion of humanistic principles with Internet of Things (IoT) technologies that alters our perception of the machine from an instrument of human engineering into a thinking peer to elevate cyber from technical esoterism into an interdisciplinary field of public policy. The contribution to the US national cybersecurity policy body of knowledge is a unified policy framework (manifested in the symbiotic cybersecurity policy triad) that could transform cybersecurity policies from network-based to entity-based. A correlation archival data design was used with the frequency of malicious software attacks as the dependent variable and diversity of intrusion techniques as the independent variable for RQ1. For RQ2, the frequency of detection events was the dependent variable and diversity of intrusion techniques was the independent variable. Self-determination Theory is the theoretical framework as the cognitive machine can recognize, self-endorse, and maintain its own identity based on a sense of self-motivation that is progressively shaped by the machine’s ability to learn. The transformation of cyber policies from technical esoterism into an interdisciplinary field of public policy starts with the recognition that the cognitive machine is an independent consumer of, advisor into, and influenced by public policy theories, philosophical constructs, and societal initiatives

    The Role of a Microservice Architecture on cybersecurity and operational resilience in critical systems

    Get PDF
    Critical systems are characterized by their high degree of intolerance to threats, in other words, their high level of resilience, because depending on the context in which the system is inserted, the slightest failure could imply significant damage, whether in economic terms, or loss of reputation, of information, of infrastructure, of the environment, or human life. The security of such systems is traditionally associated with legacy infrastructures and data centers that are monolithic, which translates into increasingly high evolution and protection challenges. In the current context of rapid transformation where the variety of threats to systems has been consistently increasing, this dissertation aims to carry out a compatibility study of the microservice architecture, which is denoted by its characteristics such as resilience, scalability, modifiability and technological heterogeneity, being flexible in structural adaptations, and in rapidly evolving and highly complex settings, making it suited for agile environments. It also explores what response artificial intelligence, more specifically machine learning, can provide in a context of security and monitorability when combined with a simple banking system that adopts the microservice architecture.Os sistemas críticos são caracterizados pelo seu elevado grau de intolerância às ameaças, por outras palavras, o seu alto nível de resiliência, pois dependendo do contexto onde se insere o sistema, a mínima falha poderá implicar danos significativos, seja em termos económicos, de perda de reputação, de informação, de infraestrutura, de ambiente, ou de vida humana. A segurança informática de tais sistemas está tradicionalmente associada a infraestruturas e data centers legacy, ou seja, de natureza monolítica, o que se traduz em desafios de evolução e proteção cada vez mais elevados. No contexto atual de rápida transformação, onde as variedades de ameaças aos sistemas têm vindo consistentemente a aumentar, esta dissertação visa realizar um estudo de compatibilidade da arquitetura de microserviços, que se denota pelas suas caraterísticas tais como a resiliência, escalabilidade, modificabilidade e heterogeneidade tecnológica, sendo flexível em adaptações estruturais, e em cenários de rápida evolução e elevada complexidade, tornando-a adequada a ambientes ágeis. Explora também a resposta que a inteligência artificial, mais concretamente, machine learning, pode dar num contexto de segurança e monitorabilidade quando combinado com um simples sistema bancário que adota uma arquitetura de microserviços
    • …
    corecore