6,766 research outputs found

    A fast solver for systems of reaction-diffusion equations

    Full text link
    In this paper we present a fast algorithm for the numerical solution of systems of reaction-diffusion equations, ∂tu+a⋅∇u=Δu+F(x,t,u)\partial_t u + a \cdot \nabla u = \Delta u + F (x, t, u), x∈Ω⊂R3x \in \Omega \subset \mathbf{R}^3, t>0t > 0. Here, uu is a vector-valued function, u≡u(x,t)∈Rmu \equiv u(x, t) \in \mathbf{R}^m, mm is large, and the corresponding system of ODEs, ∂tu=F(x,t,u)\partial_t u = F(x, t, u), is stiff. Typical examples arise in air pollution studies, where aa is the given wind field and the nonlinear function FF models the atmospheric chemistry.Comment: 8 pages, 3 figures, to appear in Proc. 13th Domain Decomposition Conference, Lyon, October 200

    High performance cluster computing with 3-D nonlinear diffusion filters

    Get PDF
    This paper deals with parallelisation and implementation aspects of PDE-based image processing models for large cluster environments with distributed memory. As an example we focus on nonlinear diffusion filtering which we discretise by means of an additive operator splitting (AOS). We start by decomposing the algorithm into small modules that shall be parallelised separately. For this purpose image partitioning strategies are discussed and their impact on the communication pattern and volume is analysed. Based on the results we develop an algorithmic implementation with excellent scaling properties on massively connected low latency networks. Test runs on a high-end Myrinet cluster yield almost linear speedup factors up to 209 for 256 processors. This results in typical denoising times of 0.5 seconds for five iterations on a 256 x 256 x 128 data cube

    Digital Color Imaging

    Full text link
    This paper surveys current technology and research in the area of digital color imaging. In order to establish the background and lay down terminology, fundamental concepts of color perception and measurement are first presented us-ing vector-space notation and terminology. Present-day color recording and reproduction systems are reviewed along with the common mathematical models used for representing these devices. Algorithms for processing color images for display and communication are surveyed, and a forecast of research trends is attempted. An extensive bibliography is provided

    An objective based classification of aggregation techniques for wireless sensor networks

    No full text
    Wireless Sensor Networks have gained immense popularity in recent years due to their ever increasing capabilities and wide range of critical applications. A huge body of research efforts has been dedicated to find ways to utilize limited resources of these sensor nodes in an efficient manner. One of the common ways to minimize energy consumption has been aggregation of input data. We note that every aggregation technique has an improvement objective to achieve with respect to the output it produces. Each technique is designed to achieve some target e.g. reduce data size, minimize transmission energy, enhance accuracy etc. This paper presents a comprehensive survey of aggregation techniques that can be used in distributed manner to improve lifetime and energy conservation of wireless sensor networks. Main contribution of this work is proposal of a novel classification of such techniques based on the type of improvement they offer when applied to WSNs. Due to the existence of a myriad of definitions of aggregation, we first review the meaning of term aggregation that can be applied to WSN. The concept is then associated with the proposed classes. Each class of techniques is divided into a number of subclasses and a brief literature review of related work in WSN for each of these is also presented

    Gossip Algorithms for Distributed Signal Processing

    Full text link
    Gossip algorithms are attractive for in-network processing in sensor networks because they do not require any specialized routing, there is no bottleneck or single point of failure, and they are robust to unreliable wireless network conditions. Recently, there has been a surge of activity in the computer science, control, signal processing, and information theory communities, developing faster and more robust gossip algorithms and deriving theoretical performance guarantees. This article presents an overview of recent work in the area. We describe convergence rate results, which are related to the number of transmitted messages and thus the amount of energy consumed in the network for gossiping. We discuss issues related to gossiping over wireless links, including the effects of quantization and noise, and we illustrate the use of gossip algorithms for canonical signal processing tasks including distributed estimation, source localization, and compression.Comment: Submitted to Proceedings of the IEEE, 29 page
    • …
    corecore