281 research outputs found

    Programming MPSoC platforms: Road works ahead

    Get PDF
    This paper summarizes a special session on multicore/multi-processor system-on-chip (MPSoC) programming challenges. The current trend towards MPSoC platforms in most computing domains does not only mean a radical change in computer architecture. Even more important from a SW developer´s viewpoint, at the same time the classical sequential von Neumann programming model needs to be overcome. Efficient utilization of the MPSoC HW resources demands for radically new models and corresponding SW development tools, capable of exploiting the available parallelism and guaranteeing bug-free parallel SW. While several standards are established in the high-performance computing domain (e.g. OpenMP), it is clear that more innovations are required for successful\ud deployment of heterogeneous embedded MPSoC. On the other hand, at least for coming years, the freedom for disruptive programming technologies is limited by the huge amount of certified sequential code that demands for a more pragmatic, gradual tool and code replacement strategy

    A Design Methodology for Space-Time Adapter

    Full text link
    This paper presents a solution to efficiently explore the design space of communication adapters. In most digital signal processing (DSP) applications, the overall architecture of the system is significantly affected by communication architecture, so the designers need specifically optimized adapters. By explicitly modeling these communications within an effective graph-theoretic model and analysis framework, we automatically generate an optimized architecture, named Space-Time AdapteR (STAR). Our design flow inputs a C description of Input/Output data scheduling, and user requirements (throughput, latency, parallelism...), and formalizes communication constraints through a Resource Constraints Graph (RCG). The RCG properties enable an efficient architecture space exploration in order to synthesize a STAR component. The proposed approach has been tested to design an industrial data mixing block example: an Ultra-Wideband interleaver.Comment: ISBN : 978-1-59593-606-

    Electronic System-Level Synthesis Methodologies

    Full text link

    Run-time management for future MPSoC platforms

    Get PDF
    In recent years, we are witnessing the dawning of the Multi-Processor Systemon- Chip (MPSoC) era. In essence, this era is triggered by the need to handle more complex applications, while reducing overall cost of embedded (handheld) devices. This cost will mainly be determined by the cost of the hardware platform and the cost of designing applications for that platform. The cost of a hardware platform will partly depend on its production volume. In turn, this means that ??exible, (easily) programmable multi-purpose platforms will exhibit a lower cost. A multi-purpose platform not only requires ??exibility, but should also combine a high performance with a low power consumption. To this end, MPSoC devices integrate computer architectural properties of various computing domains. Just like large-scale parallel and distributed systems, they contain multiple heterogeneous processing elements interconnected by a scalable, network-like structure. This helps in achieving scalable high performance. As in most mobile or portable embedded systems, there is a need for low-power operation and real-time behavior. The cost of designing applications is equally important. Indeed, the actual value of future MPSoC devices is not contained within the embedded multiprocessor IC, but in their capability to provide the user of the device with an amount of services or experiences. So from an application viewpoint, MPSoCs are designed to ef??ciently process multimedia content in applications like video players, video conferencing, 3D gaming, augmented reality, etc. Such applications typically require a lot of processing power and a signi??cant amount of memory. To keep up with ever evolving user needs and with new application standards appearing at a fast pace, MPSoC platforms need to be be easily programmable. Application scalability, i.e. the ability to use just enough platform resources according to the user requirements and with respect to the device capabilities is also an important factor. Hence scalability, ??exibility, real-time behavior, a high performance, a low power consumption and, ??nally, programmability are key components in realizing the success of MPSoC platforms. The run-time manager is logically located between the application layer en the platform layer. It has a crucial role in realizing these MPSoC requirements. As it abstracts the platform hardware, it improves platform programmability. By deciding on resource assignment at run-time and based on the performance requirements of the user, the needs of the application and the capabilities of the platform, it contributes to ??exibility, scalability and to low power operation. As it has an arbiter function between different applications, it enables real-time behavior. This thesis details the key components of such an MPSoC run-time manager and provides a proof-of-concept implementation. These key components include application quality management algorithms linked to MPSoC resource management mechanisms and policies, adapted to the provided MPSoC platform services. First, we describe the role, the responsibilities and the boundary conditions of an MPSoC run-time manager in a generic way. This includes a de??nition of the multiprocessor run-time management design space, a description of the run-time manager design trade-offs and a brief discussion on how these trade-offs affect the key MPSoC requirements. This design space de??nition and the trade-offs are illustrated based on ongoing research and on existing commercial and academic multiprocessor run-time management solutions. Consequently, we introduce a fast and ef??cient resource allocation heuristic that considers FPGA fabric properties such as fragmentation. In addition, this thesis introduces a novel task assignment algorithm for handling soft IP cores denoted as hierarchical con??guration. Hierarchical con??guration managed by the run-time manager enables easier application design and increases the run-time spatial mapping freedom. In turn, this improves the performance of the resource assignment algorithm. Furthermore, we introduce run-time task migration components. We detail a new run-time task migration policy closely coupled to the run-time resource assignment algorithm. In addition to detailing a design-environment supported mechanism that enables moving tasks between an ISP and ??ne-grained recon??gurable hardware, we also propose two novel task migration mechanisms tailored to the Network-on-Chip environment. Finally, we propose a novel mechanism for task migration initiation, based on reusing debug registers in modern embedded microprocessors. We propose a reactive on-chip communication management mechanism. We show that by exploiting an injection rate control mechanism it is possible to provide a communication management system capable of providing a soft (reactive) QoS in a NoC. We introduce a novel, platform independent run-time algorithm to perform quality management, i.e. to select an application quality operating point at run-time based on the user requirements and the available platform resources, as reported by the resource manager. This contribution also proposes a novel way to manage the interaction between the quality manager and the resource manager. In order to have a the realistic, reproducible and ??exible run-time manager testbench with respect to applications with multiple quality levels and implementation tradev offs, we have created an input data generation tool denoted Pareto Surfaces For Free (PSFF). The the PSFF tool is, to the best of our knowledge, the ??rst tool that generates multiple realistic application operating points either based on pro??ling information of a real-life application or based on a designer-controlled random generator. Finally, we provide a proof-of-concept demonstrator that combines these concepts and shows how these mechanisms and policies can operate for real-life situations. In addition, we show that the proposed solutions can be integrated into existing platform operating systems

    A Methodology for Efficient Space-Time Adapter Design Space Exploration: A Case Study of an Ultra Wide Band Interleaver

    Full text link
    This paper presents a solution to efficiently explore the design space of communication adapters. In most digital signal processing (DSP) applications, the overall architecture of the system is significantly affected by communication architecture, so the designers need specifically optimized adapters. By explicitly modeling these communications within an effective graph-theoretic model and analysis framework, we automatically generate an optimized architecture, named Space-Time AdapteR (STAR). Our design flow inputs a C description of Input/Output data scheduling, and user requirements (throughput, latency, parallelism...), and formalizes communication constraints through a Resource Constraints Graph (RCG). The RCG properties enable an efficient architecture space exploration in order to synthesize a STAR component. The proposed approach has been tested to design an industrial data mixing block example: an Ultra-Wideband interleaver.Comment: ISBN:1-4244-0921-

    DeSyRe: on-Demand System Reliability

    No full text
    The DeSyRe project builds on-demand adaptive and reliable Systems-on-Chips (SoCs). As fabrication technology scales down, chips are becoming less reliable, thereby incurring increased power and performance costs for fault tolerance. To make matters worse, power density is becoming a significant limiting factor in SoC design, in general. In the face of such changes in the technological landscape, current solutions for fault tolerance are expected to introduce excessive overheads in future systems. Moreover, attempting to design and manufacture a totally defect and fault-free system, would impact heavily, even prohibitively, the design, manufacturing, and testing costs, as well as the system performance and power consumption. In this context, DeSyRe delivers a new generation of systems that are reliable by design at well-balanced power, performance, and design costs. In our attempt to reduce the overheads of fault-tolerance, only a small fraction of the chip is built to be fault-free. This fault-free part is then employed to manage the remaining fault-prone resources of the SoC. The DeSyRe framework is applied to two medical systems with high safety requirements (measured using the IEC 61508 functional safety standard) and tight power and performance constraints

    From MARTE to Reconfigurable NoCs: A model driven design methodology

    Get PDF
    Due to the continuous exponential rise in SoC's design complexity, there is a critical need to find new seamless methodologies and tools to handle the SoC co-design aspects. We address this issue and propose a novel SoC co-design methodology based on Model Driven Engineering and the MARTE (Modeling and Analysis of Real-Time and Embedded Systems) standard proposed by Object Management Group, to raise the design abstraction levels. Extensions of this standard have enabled us to move from high level specifications to execution platforms such as reconfigurable FPGAs. In this paper, we present a high level modeling approach that targets modern Network on Chips systems. The overall objective: to perform system modeling at a high abstraction level expressed in Unified Modeling Language (UML); and afterwards, transform these high level models into detailed enriched lower level models in order to automatically generate the necessary code for final FPGA synthesis

    Joint Algorithm Developing and System-Level Design: Case Study on Video Encoding

    Get PDF
    Abstract. System-Level Design Environments (SLDEs) are often utilized for tackling the design complexity of modern embedded systems. SLDEs typically start with a specification capturing core algorithms. Algorithm development itself largely occurs in Algorithm Design Environments (ADE) with little or no hardware concern. Currently, algorithm and system design environments are disjoint; system level specifications are manually implemented which leads to the specification gap. In this paper, we bridge algorithm and system design environments creating a unified design flow facilitating algorithm and system co-design. It enables algorithm realizations over heterogeneous platforms, while still tuning the algorithm according to platform needs. Our design flow starts with algorithm design in Simulink, out of which a System Level Design Language (SLDL)-based specification is synthesized. This specification then is used for design space exploration across heterogeneous target platforms and abstraction levels, and, after identifying a suitable platform, synthesized to HW/SW implementations. It realizes a unified development cycle across algorithm modeling and system-level design with quick responses to design decisions on algorithm-, specification-and system exploration level. It empowers the designer to combine analysis results across environments, apply cross layer optimizations, which will yield an overall optimized design through rapid design iterations. We demonstrate the benefits on a MJPEG video encoder case study, showing early computation/communication estimation and rapid prototyping from Simulink models. Results from Virtual Platform performance analysis enable the algorithm designer to improve model structure to better match the heterogeneous platform in an efficient and fast design cycle. Through applying our unified design flow, an improved HW/SW is found yielding 50% performance gain compared to a pure software solution

    Predictable multi-processor system on chip design for multimedia applications

    Get PDF
    The design of multimedia systems has become increasingly complex due to consumer requirements. Consumers demand the functionalities offered by a huge desktop from these systems. Many of these systems are mobile. Therefore, power consumption and size of these devices should be small. These systems are increasingly becoming multi-processor based (MPSoCs) for the reasons of power and performance. Applications execute on these systems in different combinations also known as use-cases. Applications may have different performance requirements in each use-case. Currently, verification of all these use-cases takes bulk of the design effort. There is a need for analysis based techniques so that the platforms have a predictable behaviour and in turn provide guarantees on performance without expending precious man hours on verification. In this dissertation, techniques and architectures have been developed to design and manage these multi-processor based systems efficiently. The dissertation presents predictable architectural components for MPSoCs, a Predictable MPSoC design strategy, automatic platform synthesis tool, a run-time system and an MPSoC simulation technique. The introduction of predictability helps in rapid design of MPSoC platforms. Chapter 1 of the thesis studies the trends in modern multimedia applications and processor architectures. The chapter further highlights the problems in the design of MPSoC platforms and emphasizes the need of predictable design techniques. Predictable design techniques require predictable application and architectural components. The chapter further elaborates on Synchronous Data Flow Graphs which are used to model the applications throughout this thesis. The chapter presents the architecture template used in this thesis and enlists the contributions of the thesis. One of the contributions of this thesis is the design of a predictable component called communication assist. Chapter 2 of the thesis describes the architecture of this communication assist. The communication assist presented in this thesis not only decouples the communication from computation but also provides timing guarantees. Based on this communication assist, an MPSoC platform generation technique has been presented that can design MPSoC platforms capable of satisfying the throughput constraints of multiple applications in all use-cases. The technique is presented in Chapter 3. The design strategy uses three simple steps for platform design. In the first step it finds the required number of processors. The second step minimizes the communication interconnect between the processors and the third step minimizes the communication memory requirement of the platform. Further in Chapter 4, a tool has been developed to generate CA-based platforms for FPGAs. The output of this tool can be used to synthesize platforms on real hardware with the help of FPGA synthesis tools. The applications executing on these platforms often exhibit dynamism e.g. variation in task execution times and change in application throughput requirements. Further, new applications may often be added by consumers at run-time. Resource managers have been presented in literature to handle such dynamic situations. However, the scalability of these resource managers becomes an issue with the increase in number of processors and applications. Chapter 5 presents distributed run-time resource management techniques. Two versions of distributed resource managers have been presented which are scalable with the number of applications and processors. MPSoC platforms for real-time applications are designed assuming worst-case task execution times. It is known that the difference between average-case and worst-case behaviour can be quite large. Therefore, knowing the average case performance is also important for the system designer, and software simulation is often employed to estimate this. However, simulation in software is slow and does not scale with the number of applications and processing elements. In Chapter 6, a fast and scalable simulation methodology is introduced that can simulate the execution of multiple applications on an MPSoC platform. It is based on parallel execution of SDF (Synchronous Data Flow) models of applications. The simulation methodology uses Parallel Discrete Event Simulation (PDES) primitives and it is termed as "Smart Conservative PDES". The methodology generates a parallel simulator which is synthesizable on FPGAs. The framework can also be used to model dynamic arbitration policies which are difficult to analyse using models. The generated platform is also useful in carrying out Design Space Exploration as shown in the thesis. Finally, Chapter 7 summarizes the main findings and (practical) implications of the studies described in previous chapters of this dissertation. Using the contributions mentioned in the thesis, a designer can design and implement predictable multiprocessor based systems capable of satisfying throughput constraints of multiple applications in given set of use-cases, and employ resource management strategies to deal with dynamism in the applications. The chapter also describes the main limitations of this dissertation and makes suggestions for future research
    • …
    corecore