4,382 research outputs found

    Learning-based Application-Agnostic 3D NoC Design for Heterogeneous Manycore Systems

    Full text link
    The rising use of deep learning and other big-data algorithms has led to an increasing demand for hardware platforms that are computationally powerful, yet energy-efficient. Due to the amount of data parallelism in these algorithms, high-performance 3D manycore platforms that incorporate both CPUs and GPUs present a promising direction. However, as systems use heterogeneity (e.g., a combination of CPUs, GPUs, and accelerators) to improve performance and efficiency, it becomes more pertinent to address the distinct and likely conflicting communication requirements (e.g., CPU memory access latency or GPU network throughput) that arise from such heterogeneity. Unfortunately, it is difficult to quickly explore the hardware design space and choose appropriate tradeoffs between these heterogeneous requirements. To address these challenges, we propose the design of a 3D Network-on-Chip (NoC) for heterogeneous manycore platforms that considers the appropriate design objectives for a 3D heterogeneous system and explores various tradeoffs using an efficient ML-based multi-objective optimization technique. The proposed design space exploration considers the various requirements of its heterogeneous components and generates a set of 3D NoC architectures that efficiently trades off these design objectives. Our findings show that by jointly considering these requirements (latency, throughput, temperature, and energy), we can achieve 9.6% better Energy-Delay Product on average at nearly iso-temperature conditions when compared to a thermally-optimized design for 3D heterogeneous NoCs. More importantly, our results suggest that our 3D NoCs optimized for a few applications can be generalized for unknown applications as well. Our results show that these generalized 3D NoCs only incur a 1.8% (36-tile system) and 1.1% (64-tile system) average performance loss compared to application-specific NoCs.Comment: Published in IEEE Transactions on Computer

    Optimizing Routerless Network-on-Chip Designs: An Innovative Learning-Based Framework

    Full text link
    Machine learning applied to architecture design presents a promising opportunity with broad applications. Recent deep reinforcement learning (DRL) techniques, in particular, enable efficient exploration in vast design spaces where conventional design strategies may be inadequate. This paper proposes a novel deep reinforcement framework, taking routerless networks-on-chip (NoC) as an evaluation case study. The new framework successfully resolves problems with prior design approaches being either unreliable due to random searches or inflexible due to severe design space restrictions. The framework learns (near-)optimal loop placement for routerless NoCs with various design constraints. A deep neural network is developed using parallel threads that efficiently explore the immense routerless NoC design space with a Monte Carlo search tree. Experimental results show that, compared with conventional mesh, the proposed deep reinforcement learning (DRL) routerless design achieves a 3.25x increase in throughput, 1.6x reduction in packet latency, and 5x reduction in power. Compared with the state-of-the-art routerless NoC, DRL achieves a 1.47x increase in throughput, 1.18x reduction in packet latency, and 1.14x reduction in average hop count albeit with slightly more power overhead.Comment: 13 pages, 15 figure

    Hardware-Aware Machine Learning: Modeling and Optimization

    Full text link
    Recent breakthroughs in Deep Learning (DL) applications have made DL models a key component in almost every modern computing system. The increased popularity of DL applications deployed on a wide-spectrum of platforms have resulted in a plethora of design challenges related to the constraints introduced by the hardware itself. What is the latency or energy cost for an inference made by a Deep Neural Network (DNN)? Is it possible to predict this latency or energy consumption before a model is trained? If yes, how can machine learners take advantage of these models to design the hardware-optimal DNN for deployment? From lengthening battery life of mobile devices to reducing the runtime requirements of DL models executing in the cloud, the answers to these questions have drawn significant attention. One cannot optimize what isn't properly modeled. Therefore, it is important to understand the hardware efficiency of DL models during serving for making an inference, before even training the model. This key observation has motivated the use of predictive models to capture the hardware performance or energy efficiency of DL applications. Furthermore, DL practitioners are challenged with the task of designing the DNN model, i.e., of tuning the hyper-parameters of the DNN architecture, while optimizing for both accuracy of the DL model and its hardware efficiency. Therefore, state-of-the-art methodologies have proposed hardware-aware hyper-parameter optimization techniques. In this paper, we provide a comprehensive assessment of state-of-the-art work and selected results on the hardware-aware modeling and optimization for DL applications. We also highlight several open questions that are poised to give rise to novel hardware-aware designs in the next few years, as DL applications continue to significantly impact associated hardware systems and platforms.Comment: ICCAD'18 Invited Pape

    Machine Learning and Manycore Systems Design: A Serendipitous Symbiosis

    Full text link
    Tight collaboration between experts of machine learning and manycore system design is necessary to create a data-driven manycore design framework that integrates both learning and expert knowledge. Such a framework will be necessary to address the rising complexity of designing large-scale manycore systems and machine learning techniques.Comment: To appear in a future publication of IEEE Compute

    A survey on scheduling and mapping techniques in 3D Network-on-chip

    Full text link
    Network-on-Chips (NoCs) have been widely employed in the design of multiprocessor system-on-chips (MPSoCs) as a scalable communication solution. NoCs enable communications between on-chip Intellectual Property (IP) cores and allow those cores to achieve higher performance by outsourcing their communication tasks. Mapping and Scheduling methodologies are key elements in assigning application tasks, allocating the tasks to the IPs, and organising communication among them to achieve some specified objectives. The goal of this paper is to present a detailed state-of-the-art of research in the field of mapping and scheduling of applications on 3D NoC, classifying the works based on several dimensions and giving some potential research directions

    Scalability of broadcast performance in wireless network-on-chip

    Get PDF
    Networks-on-Chip (NoCs) are currently the paradigm of choice to interconnect the cores of a chip multiprocessor. However, conventional NoCs may not suffice to fulfill the on-chip communication requirements of processors with hundreds or thousands of cores. The main reason is that the performance of such networks drops as the number of cores grows, especially in the presence of multicast and broadcast traffic. This not only limits the scalability of current multiprocessor architectures, but also sets a performance wall that prevents the development of architectures that generate moderate-to-high levels of multicast. In this paper, a Wireless Network-on-Chip (WNoC) where all cores share a single broadband channel is presented. Such design is conceived to provide low latency and ordered delivery for multicast/broadcast traffic, in an attempt to complement a wireline NoC that will transport the rest of communication flows. To assess the feasibility of this approach, the network performance of WNoC is analyzed as a function of the system size and the channel capacity, and then compared to that of wireline NoCs with embedded multicast support. Based on this evaluation, preliminary results on the potential performance of the proposed hybrid scheme are provided, together with guidelines for the design of MAC protocols for WNoC.Peer ReviewedPostprint (published version

    White Paper on Critical and Massive Machine Type Communication Towards 6G

    Full text link
    The society as a whole, and many vertical sectors in particular, is becoming increasingly digitalized. Machine Type Communication (MTC), encompassing its massive and critical aspects, and ubiquitous wireless connectivity are among the main enablers of such digitization at large. The recently introduced 5G New Radio is natively designed to support both aspects of MTC to promote the digital transformation of the society. However, it is evident that some of the more demanding requirements cannot be fully supported by 5G networks. Alongside, further development of the society towards 2030 will give rise to new and more stringent requirements on wireless connectivity in general, and MTC in particular. Driven by the societal trends towards 2030, the next generation (6G) will be an agile and efficient convergent network serving a set of diverse service classes and a wide range of key performance indicators (KPI). This white paper explores the main drivers and requirements of an MTC-optimized 6G network, and discusses the following six key research questions: - Will the main KPIs of 5G continue to be the dominant KPIs in 6G; or will there emerge new key metrics? - How to deliver different E2E service mandates with different KPI requirements considering joint-optimization at the physical up to the application layer? - What are the key enablers towards designing ultra-low power receivers and highly efficient sleep modes? - How to tackle a disruptive rather than incremental joint design of a massively scalable waveform and medium access policy for global MTC connectivity? - How to support new service classes characterizing mission-critical and dependable MTC in 6G? - What are the potential enablers of long term, lightweight and flexible privacy and security schemes considering MTC device requirements?Comment: White paper by http://www.6GFlagship.co

    Toward Creating Subsurface Camera

    Full text link
    In this article, the framework and architecture of Subsurface Camera (SAMERA) is envisioned and described for the first time. A SAMERA is a geophysical sensor network that senses and processes geophysical sensor signals, and computes a 3D subsurface image in-situ in real-time. The basic mechanism is: geophysical waves propagating/reflected/refracted through subsurface enter a network of geophysical sensors, where a 2D or 3D image is computed and recorded; a control software may be connected to this network to allow view of the 2D/3D image and adjustment of settings such as resolution, filter, regularization and other algorithm parameters. System prototypes based on seismic imaging have been designed. SAMERA technology is envisioned as a game changer to transform many subsurface survey and monitoring applications, including oil/gas exploration and production, subsurface infrastructures and homeland security, wastewater and CO2 sequestration, earthquake and volcano hazard monitoring. The system prototypes for seismic imaging have been built. Creating SAMERA requires an interdisciplinary collaboration and transformation of sensor networks, signal processing, distributed computing, and geophysical imaging.Comment: 15 pages, 7 figure

    A Survey of Neuromorphic Computing and Neural Networks in Hardware

    Full text link
    Neuromorphic computing has come to refer to a variety of brain-inspired computers, devices, and models that contrast the pervasive von Neumann computer architecture. This biologically inspired approach has created highly connected synthetic neurons and synapses that can be used to model neuroscience theories as well as solve challenging machine learning problems. The promise of the technology is to create a brain-like ability to learn and adapt, but the technical challenges are significant, starting with an accurate neuroscience model of how the brain works, to finding materials and engineering breakthroughs to build devices to support these models, to creating a programming framework so the systems can learn, to creating applications with brain-like capabilities. In this work, we provide a comprehensive survey of the research and motivations for neuromorphic computing over its history. We begin with a 35-year review of the motivations and drivers of neuromorphic computing, then look at the major research areas of the field, which we define as neuro-inspired models, algorithms and learning approaches, hardware and devices, supporting systems, and finally applications. We conclude with a broad discussion on the major research topics that need to be addressed in the coming years to see the promise of neuromorphic computing fulfilled. The goals of this work are to provide an exhaustive review of the research conducted in neuromorphic computing since the inception of the term, and to motivate further work by illuminating gaps in the field where new research is needed
    corecore