1,466 research outputs found

    The application of impantable sensors in the musculoskeletal system: a review

    Get PDF
    As the population ages and the incidence of traumatic events rises, there is a growing trend toward the implantation of devices to replace damaged or degenerated tissues in the body. In orthopedic applications, some implants are equipped with sensors to measure internal data and monitor the status of the implant. In recent years, several multi-functional implants have been developed that the clinician can externally control using a smart device. Experts anticipate that these versatile implants could pave the way for the next-generation of technological advancements. This paper provides an introduction to implantable sensors and is structured into three parts. The first section categorizes existing implantable sensors based on their working principles and provides detailed illustrations with examples. The second section introduces the most common materials used in implantable sensors, divided into rigid and flexible materials according to their properties. The third section is the focal point of this article, with implantable orthopedic sensors being classified as joint, spine, or fracture, based on different practical scenarios. The aim of this review is to introduce various implantable orthopedic sensors, compare their different characteristics, and outline the future direction of their development and application

    2023-2024 Graduate School Catalog

    Get PDF
    You and your peers represent more than 67 countries and your shared scholarship spans 140 programs - from business administration and biomedical engineering to history, horticulture, musical performance, marine science, and more. Your ideas and interests will inform public health, create opportunities for art and innovation, contribute to the greater good, and positively impact economic development in Maine and beyond

    Development of an in vitro blood flow model to evaluate antimicrobial coatings for blood-contacting devices

    Get PDF
    Pre-clinical evaluation of novel antimicrobial coatings for blood-contacting devices commonly relies on the performance of animal studies since alternative in vitro models do not adequately represent the interactions between blood, bacteria, and material surfaces as they occur in vivo. To reduce the need of these cost-intensive and controversial animal tests, this project was dedicated to the development of a new model setup that overcomes this limitation and allows in vitro evaluation under in vivo-like conditions. This newly developed model was intended to be directly applied to evaluate recently in-house developed antimicrobial coatings, so-called anchor polymers. Therefore, the project was divided into two parts. The first part of the project focused on the evaluation of the anchor polymer coatings concerning their applicability in blood-contacting devices. For this purpose, the PEGylated styrene-maleic acid copolymers were intensively studied using established laboratory tests. These examinations showed very promising results regarding adsorption and stability on relevant polymer substrates, antimicrobial efficacy, and biological safety of the coatings, thus revealing their great potential for future applications in medical devices. Moreover, this basic characterization was meant to allow a subsequent comparison of the new in vitro model with state-of-the-art in vitro tests. The second part of the thesis focused on the development of the realistic in vitro model. Here, a single-pass flow system realized the implementation of adjustable flow conditions. Furthermore, incubation with freshly drawn human blood provided a physiological nutrient environment and included the influence of an immune response. Staphylococcus aureus were chosen as representative microorganisms, as they are responsible for a majority of device-related blood stream infections. The resulting blood flow model was validated with one anti-adhesive and one contact-killing anchor polymer coating, confirming the model’s ability to differentiate the investigated surfaces. Inflammatory and coagulant blood activation correlated slightly with bacterial coverage, which in turn was strongly dependent on the investigated material surface. Incubation with varying flow conditions demonstrated the model’s capability to reflect the well-documented dependence of bacterial colonization and occurring flow conditions. In contrast to the state-of-the-art in vitro tests, the simultaneous incubation of test surface, bacteria and whole blood allowed the analysis of mutual interactions of the three parameters. Thus, the model represents an excellent method for pre-clinical evaluation of novel antimicrobial coatings for blood-contacting devices

    Peri-implant diseases diagnosis, prognosis and dental implant monitoring: a narrative review of novel strategies and clinical impact

    Get PDF
    BACKGROUND: The diagnosis of peri-implantar and periodontal relies mainly on a set of clinical measures and the evaluation of radiographic images. However, these clinical settings alone are not sufficient to determine, much less predict, periimplant bone loss or future implant failure. Early diagnosis of periimplant diseases and its rate of progress may be possible through biomarkers assessment. Once identified, biomarkers of peri-implant and periodontal tissue destruction may alert the clinicians before clinical signs show up. Therefore, it is important to consider developing chair-side diagnostic tests with specificity for a particular biomarker, indicating the current activity of the disease. METHODS: A search strategy was created at Pubmed and Web of Science to answer the question: "How the molecular point-of-care tests currently available can help in the early detection of peri-implant diseases and throws light on improvements in point of care diagnostics devices?". RESULTS: The PerioSafe® PRO DRS (dentognostics GmbH, Jena) and ImplantSafe® DR (dentognostics GmbH, Jena ORALyzer® test kits, already used clinically, can be a helpful adjunct tool in enhancing the diagnosis and prognosis of periodontal/peri-implantar diseases. With the advances of sensor technology, the biosensors can perform daily monitoring of dental implants or periodontal diseases, making contributions to personal healthcare and improve the current status quo of health management and human health. CONCLUSIONS: Based on the findings, more emphasis is given to the role of biomarkers in diagnosing and monitoring periodontal and peri-implant diseases. By combining these strategies with traditional protocols, professionals could increase the accuracy of early detection of peri-implant and periodontal diseases, predicting disease progression, and monitoring of treatment outcomes.info:eu-repo/semantics/publishedVersio

    Analysis, Design and Fabrication of Micromixers, Volume II

    Get PDF
    Micromixers are an important component in micrototal analysis systems and lab-on-a-chip platforms which are widely used for sample preparation and analysis, drug delivery, and biological and chemical synthesis. The Special Issue "Analysis, Design and Fabrication of Micromixers II" published in Micromachines covers new mechanisms, numerical and/or experimental mixing analysis, design, and fabrication of various micromixers. This reprint includes an editorial, two review papers, and eleven research papers reporting on five active and six passive micromixers. Three of the active micromixers have electrokinetic driving force, but the other two are activated by mechanical mechanism and acoustic streaming. Three studies employs non-Newtonian working fluids, one of which deals with nano-non-Newtonian fluids. Most of the cases investigated micromixer design

    Course Catalog. Karlsruhe Institute for Technology (KIT). Winter term 2022/23

    Get PDF

    Advances in Micro- and Nanomechanics

    Get PDF
    This book focuses on recent advances in both theoretical and experimental studies of material behaviour at the micro- and nano-scales. Special attention is given to experimental studies of nanofilms, nanoparticles and nanocomposites as well as tooth defects. Various experimental techniques were used. Magneto- and thermoelastic coupling were considered, as were nonlocal models of thin structures
    corecore